John M Arthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260640/publications.pdf

Version: 2024-02-01

82

all docs

80 3,860 32 papers citations h-index

3,860 32 60
citations h-index g-index

82 82 4615
docs citations times ranked citing authors

128289

#	Article	IF	CITATIONS
1	Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney International, 2021, 100, 171-181.	5.2	94
2	NELL1 is a target antigen in malignancy-associated membranous nephropathy. Kidney International, 2021, 99, 967-976.	5.2	108
3	Transforming Growth Factor Beta Receptor 3 (TGFBR3)–Associated Membranous Nephropathy. Kidney360, 2021, 2, 1275-1286.	2.1	30
4	Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0257016.	2.5	107
5	APOL1 Risk Variants and Acute Kidney Injury in Black Americans with COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1790-1796.	4.5	8
6	Serum amyloid P deposition is a sensitive and specific feature of membranous-like glomerulopathy with masked IgG kappa deposits. Kidney International, 2020, 97, 602-608.	5.2	14
7	Home runâ€"results of a chronic kidney disease Telemedicine Patient Education Study. CKJ: Clinical Kidney Journal, 2020, 13, 867-872.	2.9	18
8	Resistant starch slows the progression of CKD in the 5/6 nephrectomy mouse model. Physiological Reports, 2020, 8, e14610.	1.7	15
9	Implications of renal ACE2 expression in the age of COVID-19. European Heart Journal, 2020, 41, 4589-4591.	2,2	3
10	Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats. PLoS ONE, 2019, 14, e0199274.	2.5	25
11	Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. Journal of Clinical Lipidology, 2019, 13, 481-491.e1.	1.5	25
12	Chronic kidney disease and the gut microbiome. American Journal of Physiology - Renal Physiology, 2019, 316, F1211-F1217.	2.7	147
13	Vancomycin-Associated Acute Kidney Injury with a Steep Rise in Serum Creatinine. Nephron, 2018, 139, 131-142.	1.8	6
14	Perfluoroalkyl substances and kidney function in chronic kidney disease, anemia, and diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2018, Volume 11, 707-716.	2.4	36
15	A Novel CLCN5 Mutation Associated WithÂFocal Segmental Glomerulosclerosis andÂPodocyte Injury. Kidney International Reports, 2018, 3, 1443-1453.	0.8	22
16	Proteomic Analysis for Identification of Biomarkers that Predict Severe Acute Kidney Injury. Nephron, 2018, 140, 129-133.	1.8	7
17	Deficiency of the Angiotensinase Aminopeptidase A Increases Susceptibility to Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 2119-2132.	6.1	12
18	Renal cold storage followed by transplantation impairs expression of key mitochondrial fission and fusion proteins. PLoS ONE, 2017, 12, e0185542.	2.5	24

#	Article	IF	CITATIONS
19	Development of Biomarker Models to Predict Outcomes in Lupus Nephritis. Arthritis and Rheumatology, 2016, 68, 1955-1963.	5.6	42
20	Letter to the editor: "Concern regarding quantification of urinary nephrin by a commercially available ELISA― American Journal of Physiology - Renal Physiology, 2015, 309, F269-F270.	2.7	1
21	Proteomic analysis of cerebrospinal fluid in California sea lions (<i>Zalophus californianus</i>) with domoic acid toxicosis identifies proteins associated with neurodegeneration. Proteomics, 2015, 15, 4051-4063.	2.2	17
22	Comparison of the Rate of Renal Function Decline in NonProteinuric Patients With and Without Diabetes. American Journal of the Medical Sciences, 2015, 350, 447-452.	1.1	23
23	Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity. Journal of the American Society of Nephrology: JASN, 2015, 26, 2023-2031.	6.1	205
24	Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. American Journal of Physiology - Renal Physiology, 2015, 309, F204-F215.	2.7	48
25	Urinary ATP Synthase Subunit \hat{l}^2 Is a Novel Biomarker of Renal Mitochondrial Dysfunction in Acute Kidney Injury. Toxicological Sciences, 2015, 145, 108-117.	3.1	13
26	Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney International, 2015, 88, 1336-1344.	5 . 2	84
27	Biomarkers of AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 147-155.	4.5	241
28	Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus) Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis. PLoS ONE, 2015, 10, e0123295.	2.5	13
29	Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney International, 2014, 85, 431-438.	5.2	117
30	Lack of Renoprotective Effect of Chronic Intravenous Angiotensin-(1-7) or Angiotensin-(2-10) in a Rat Model of Focal Segmental Glomerulosclerosis. PLoS ONE, 2014, 9, e110083.	2.5	6
31	Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney International, 2013, 83, 1136-1143.	5.2	63
32	Urinary angiotensinogen predicts adverse outcomes among acute kidney injury patients in the intensive care unit. Critical Care, 2013, 17, R69.	5.8	28
33	Proteomic analysis of murine bone marrow niche microenvironment identifies thioredoxin as a novel agent for radioprotection and for enhancing donor cell reconstitution. Experimental Hematology, 2013, 41, 944-956.	0.4	6
34	Urinary Angiotensinogen and Risk of Severe AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 184-193.	4.5	62
35	Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury. Critical Care, 2013, 17, R207.	5.8	265
36	Ratiometric Measurements of Adiponectin by Mass Spectrometry in Bottlenose Dolphins (Tursiops) Tj ETQq0 0 in Endocrinology, 2013, 4, 132.	0 rgBT /Ov 3.5	verlock 10 Tf 50 13

in Endocrinology, 2013, 4, 132.

#	Article	IF	CITATIONS
37	Network Modeling Reveals Steps in Angiotensin Peptide Processing. Hypertension, 2013, 61, 690-700.	2.7	24
38	Association of Elevated Urinary Concentration of Renin-Angiotensin System Components and Severe AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 2043-2052.	4.5	30
39	Enzymatic processing of angiotensin peptides by human glomerular endothelial cells. American Journal of Physiology - Renal Physiology, 2012, 302, F1583-F1594.	2.7	38
40	Overcoming the Effects of Matrix Interference in the Measurement of Urine Protein Analytes. Biomarker Insights, 2012, 7, BMI.S8703.	2.5	34
41	Diabetes-Induced Renal Injury in Rats Is Attenuated by Suramin. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 34-43.	2.5	28
42	Biomarkers in Glomerular Disease. , 2011, , 367-383.		1
43	Effect of loading dose and formulation on safety and efficacy of conivaptan in treatment of euvolemic and hypervolemic hyponatremia. American Journal of Health-System Pharmacy, 2011, 68, 590-598.	1.0	8
44	Cilia movement regulates expression of the Raf-1 kinase inhibitor protein. American Journal of Physiology - Renal Physiology, 2011, 300, F1163-F1170.	2.7	7
45	Identification of Diagnostic Urinary Biomarkers for Acute Kidney Injury. Journal of Investigative Medicine, 2010, 58, 612-620.	1.6	14
46	Intravenous conivaptan for the treatment of hyponatraemia caused by the syndrome of inappropriate secretion of antidiuretic hormone in hospitalized patients: a single-centre experience. Nephrology Dialysis Transplantation, 2010, 25, 1524-1531.	0.7	68
47	Proteomics in CKD. Advances in Chronic Kidney Disease, 2010, 17, 453-454.	1.4	1
48	Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney International, 2010, 78, 296-302.	5.2	160
49	Sources of variability among replicate samples separated by two-dimensional gel electrophoresis. Journal of Biomolecular Techniques, 2010, 21, 3-8.	1.5	23
50	Identification of diagnostic urinary biomarkers for acute kidney injury. Journal of Investigative Medicine, 2010, 58, 612-20.	1.6	5
51	Angiotensin I Is Largely Converted to Angiotensin (1-7) and Angiotensin (2-10) by Isolated Rat Glomeruli. Hypertension, 2009, 53, 790-797.	2.7	50
52	Changes in protein profiles during course of experimental glomerulonephritis. American Journal of Physiology - Renal Physiology, 2009, 296, F186-F193.	2.7	10
53	Proteomics and Acute Renal Failure. , 2009, , 465-469.		0
54	An open-source representation for 2-DE-centric proteomics and support infrastructure for data storage and analysis. BMC Bioinformatics, 2008, 9, 4.	2.6	21

#	Article	IF	CITATIONS
55	Diagnostic and Prognostic Biomarkers in Acute Renal Failure. , 2008, 160, 53-64.		10
56	Changes in protein expression in Burkholderia vietnamiensis PR1301 at pHâ€5 and 7 with and without nickel. Microbiology (United Kingdom), 2008, 154, 3813-3824.	1.8	8
57	Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. American Journal of Physiology - Renal Physiology, 2007, 293, F398-F407.	2.7	83
58	Urine Biomarkers Predict the Cause of Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 913-922.	6.1	205
59	Proteomics in renal research. American Journal of Physiology - Renal Physiology, 2007, 292, F501-F512.	2.7	51
60	Prediction of urinary protein markers in lupus nephritis. Kidney International, 2005, 68, 2588-2592.	5.2	65
61	Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics. Proteomics, 2005, 5, 1242-1249.	2.2	58
62	AGML Central: web based gel proteomic infrastructure. Bioinformatics, 2005, 21, 1754-1757.	4.1	18
63	An XML standard for the dissemination of annotated 2D gel electrophoresis data complemented with mass spectrometry results. BMC Bioinformatics, 2004, 5, 9.	2.6	36
64	Identification of Proteins in Slow Continuous Ultrafiltrate by Reversed-Phase Chromatography and Proteomics. Journal of Proteome Research, 2004, 3, 1254-1260.	3.7	35
65	Proteomic Identification of a Large Complement of Rat Urinary Proteins. Nephron Experimental Nephrology, 2003, 95, e69-e78.	2.2	43
66	Sodium loading changes urinary protein excretion: a proteomic analysis. American Journal of Physiology - Renal Physiology, 2003, 284, F1155-F1163.	2.7	42
67	Proteomics. Current Opinion in Nephrology and Hypertension, 2003, 12, 423-430.	2.0	23
68	Proteomic Analysis Reveals Alterations in the Renal Kallikrein Pathway during Hypoxia-Induced Hypertension. Journal of Biological Chemistry, 2002, 277, 34708-34716.	3.4	65
69	Efficient adenylyl cyclase activation by a \hat{I}^2 2-adrenoceptor-Gi \hat{I} ±2 fusion protein. Biochemical and Biophysical Research Communications, 2002, 298, 824-828.	2.1	11
70	Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 2002, 62, 1461-1469.	5.2	324
71	Differential expression of proteins in renal cortex and medulla: A proteomic approach11See Editorial by Bonventre, p. 1470 Kidney International, 2002, 62, 1314-1321.	5 . 2	62
72	The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. American Journal of Physiology - Renal Physiology, 2001, 280, F815-F822.	2.7	53

#	Article	IF	CITATIONS
73	Interaction of cyclosporine and FK506 with diuretics in transplant patients. Kidney International, 2000, 58, 325-330.	5.2	24
74	Deficient homologous desensitization of formyl peptide receptors stably expressed in undifferentiated HL-60 cells. Biochemical Pharmacology, 2000, 60, 179-187.	4.4	7
7 5	The Calcium-Sensing Receptor Stimulates JNK in MDCK Cells. Biochemical and Biophysical Research Communications, 2000, 275, 538-541.	2.1	37
76	Quantitative Analysis of Formyl Peptide Receptor Coupling to $G(\hat{l}\pm 1, G(\hat{l}\pm 2, and G(\hat{l}\pm 3, Journal of Biological Chemistry, 1999, 274, 33259-33266.$	3.4	78
77	Activation of Mitogen-activated Protein Kinases by Formyl Peptide Receptors Is Regulated by the Cytoplasmic Tail. Journal of Biological Chemistry, 1998, 273, 20916-20923.	3.4	14
78	Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors. Biochemical Pharmacology, 1993, 45, 2337-2341.	4.4	33
79	Role of medullary lateral reticular formation in baroreflex coronary vasoconstriction. Brain Research, 1991, 557, 202-209.	2.2	4
80	Are Undergraduates Familiar with Nephrology as a Medical Specialty? - A Single Site Survey of Undergraduate Students. Kidney360, 0, 3, 10.34067/KID.0002472022.	2.1	O