
Tâm Mignot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258950/publications.pdf Version: 2024-02-01

TâM MICNOT

#	Article	IF	CITATIONS
1	Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility. Science, 2007, 315, 853-856.	12.6	207
2	Motor-driven intracellular transport powers bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7559-7564.	7.1	153
3	Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Reports, 2013, 3, 36-41.	6.4	124
4	Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO Journal, 2010, 29, 315-326.	7.8	120
5	Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?. Microbiology and Molecular Biology Reviews, 2010, 74, 229-249.	6.6	120
6	The mechanism of force transmission at bacterial focal adhesion complexes. Nature, 2016, 539, 530-535.	27.8	120
7	Regulated Pole-to-Pole Oscillations of a Bacterial Gliding Motility Protein. Science, 2005, 310, 855-857.	12.6	117
8	From individual cell motility to collective behaviors: insights from a prokaryote, <i>Myxococcus xanthus</i> . FEMS Microbiology Reviews, 2012, 36, 149-164.	8.6	112
9	A Bacterial Ras-Like Small GTP-Binding Protein and Its Cognate GAP Establish a Dynamic Spatial Polarity Axis to Control Directed Motility. PLoS Biology, 2010, 8, e1000430.	5.6	85
10	Emergence and Modular Evolution of a Novel Motility Machinery in Bacteria. PLoS Genetics, 2011, 7, e1002268.	3.5	77
11	Direct live imaging of cell–cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. ELife, 2013, 2, e00868.	6.0	75
12	Wet-surface–enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10036-10041.	7.1	73
13	The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. Seminars in Cell and Developmental Biology, 2015, 46, 143-154.	5.0	60
14	A Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium Myxococcus xanthus. PLoS Genetics, 2012, 8, e1002872.	3.5	58
15	The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. Journal of Cell Biology, 2015, 210, 243-256.	5.2	56
16	A Microscope Automated Fluidic System to Study Bacterial Processes in Real Time. PLoS ONE, 2009, 4, e7282.	2.5	46
17	A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus. Nature Microbiology, 2018, 3, 948-959.	13.3	44
18	A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. ELife, 2021, 10, .	6.0	42

TâM MIGNOT

#	Article	IF	CITATIONS
19	A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus. PLoS Biology, 2013, 11, e1001728.	5.6	41
20	Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. PLoS Biology, 2020, 18, e3000728.	5.6	37
21	Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities. ELife, 2021, 10, .	6.0	36
22	Regulations governing the multicellular lifestyle of Myxococcus xanthus. Current Opinion in Microbiology, 2016, 34, 104-110.	5.1	35
23	MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2484-2489.	7.1	35
24	Super-Resolution Imaging of Bacteria in a Microfluidics Device. PLoS ONE, 2013, 8, e76268.	2.5	35
25	The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in <i>Myxococcus xanthus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28366-28373.	7.1	34
26	Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genetics, 2015, 11, e1005460.	3.5	33
27	An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS. Molecular Microbiology, 2007, 65, 319-332.	2.5	32
28	Functional Organization of a Multimodular Bacterial Chemosensory Apparatus. PLoS Genetics, 2014, 10, e1004164.	3.5	32
29	MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nature Communications, 2019, 10, 5300.	12.8	25
30	Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility. PLoS Biology, 2019, 17, e3000459.	5.6	22
31	Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Molecular Microbiology, 2007, 65, 363-372.	2.5	21
32	Single Cell Microfluidic Studies of Bacterial Motility. Methods in Molecular Biology, 2013, 966, 97-107.	0.9	18
33	An evolutionary link between capsular biogenesis and surface motility in bacteria. Nature Reviews Microbiology, 2015, 13, 318-326.	28.6	16
34	Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biology, 2022, 20, e3001443.	5.6	14
35	Dynamic polarity control by a tunable protein oscillator in bacteria. Current Opinion in Cell Biology, 2020, 62, 54-60.	5.4	11
36	Linking single-cell decisions to collective behaviours in social bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190755.	4.0	10

Тâм Міgnot

#	Article	IF	CITATIONS
37	Establishing rod shape from spherical, peptidoglycan-deficient bacterial spores. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14444-14452.	7.1	9
38	Chitosan Films for Microfluidic Studies of Single Bacteria and Perspectives for Antibiotic Susceptibility Testing. MBio, 2019, 10, .	4.1	8
39	Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. Microbiology (United Kingdom), 2018, 164, 308-321.	1.8	8
40	The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genetics, 2017, 13, e1007103.	3.5	8
41	Complete Genome Assembly of Myxococcus xanthus Strain DZ2 Using Long High-Fidelity (HiFi) Reads Generated with PacBio Technology. Microbiology Resource Announcements, 2021, 10, e0053021.	0.6	7
42	A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays. PLoS Genetics, 2019, 15, e1008533.	3.5	3
43	The differential expression of PilY1 proteins by the HsfBA phosphorelay allows twitching motility in the absence of exopolysaccharides. PLoS Genetics, 2022, 18, e1010188.	3.5	3
44	Biology across scales: from atomic processes to bacterial communities through the lens of the microscope. FEMS Microbiology Reviews, 2021, 45, .	8.6	1
45	Growth and development: prokaryotes. Current Opinion in Microbiology, 2012, 15, 705-706.	5.1	0
46	The Mechanism of Bacterial Gliding Motility: Insights from Molecular and Cellular Studies in the Myxobacteria and Bacteroidetes. , 2014, , 127-143.		0
47	Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. , 2020, 18, e3000728.		0
48	Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. , 2020, 18, e3000728.		0
49	Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. , 2020, 18, e3000728.		0
50	Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. , 2020, 18, e3000728.		0
51	1H, 13C and 15N chemical shift assignments of the ZnR and GYF cytoplasmic domains of the GltJ protein from Myxococcus xanthus. Biomolecular NMR Assignments, 2022, , 1.	0.8	0