Ichiro Yamato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925854/publications.pdf

Version: 2024-02-01

430874 377865 1,229 38 18 34 h-index citations g-index papers 41 41 41 857 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	An affinity change model to elucidate the rotation mechanism of V1-ATPase. Biochemical and Biophysical Research Communications, 2020, 533, 1413-1418.	2.1	1
2	Metastable asymmetrical structure of a shaftless V $<$ sub $>$ 1 $<$ /sub $>$ motor. Science Advances, 2019, 5, eaau8149.	10.3	13
3	Rotational Mechanism Model of the Bacterial V1 Motor Based on Structural and Computational Analyses. Frontiers in Physiology, 2019, 10, 46.	2.8	7
4	Energy and information flows in biological systems: Bioenergy transduction of V 1 -ATPase rotary motor and dynamics of thermodynamic entropy in information flows. Progress in Biophysics and Molecular Biology, 2017, 130, 33-38.	2.9	7
5	Editorial. Progress in Biophysics and Molecular Biology, 2017, 130, 1.	2.9	O
6	A model of differentiation in quantum bioinformatics. Progress in Biophysics and Molecular Biology, 2017, 130, 88-98.	2.9	21
7	Three-body system metaphor for the two-slit experiment and Escherichia coli lactose–glucose metabolism. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150243.	3.4	7
8	Application of Non-Kolmogorovian Probability and Quantum Adaptive Dynamics to Unconscious Inference in Visual Perception Process. Open Systems and Information Dynamics, 2016, 23, 1650011.	1.2	4
9	Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor. Nature Communications, 2016, 7, 13235.	12.8	40
10	Operating principles of rotary molecular motors: differences between F ₁ and V ₁ motors. Biophysics and Physicobiology, 2016, 13, 37-44.	1.0	9
11	Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Foundations of Physics, 2015, 45, 1362-1378.	1.3	50
12	Quantum Adaptivity in Biology: From Genetics to Cognition. , 2015, , .		58
13	Fundamentals of Molecular Biology. , 2015, , 41-55.		O
14	Lamarckian Evolution of Epigenome from Open Quantum Systems and Entanglement. Lecture Notes in Computer Science, 2014, , 324-334.	1.3	0
15	Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law. Foundations of Physics, 2013, 43, 895-911.	1.3	35
16	Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature, 2013, 493, 703-707.	27.8	114
17	A model of epigenetic evolution based on theory of open quantum systems. Systems and Synthetic Biology, 2013, 7, 161-173.	1.0	37
18	Basic Properties of Rotary Dynamics of the Molecular Motor Enterococcus hirae V1-ATPase. Journal of Biological Chemistry, 2013, 288, 32700-32707.	3.4	51

#	Article	IF	Citations
19	Loose Binding of the DF Axis with the A3B3 Complex Stimulates the Initial Activity of Enterococcus hirae V1-ATPase. PLoS ONE, 2013, 8, e74291.	2.5	7
20	Mutagenesis of the Residues Forming an Ion Binding Pocket of the NtpK Subunit of Enterococcus hirae V-ATPase. Journal of Bacteriology, 2012, 194, 4546-4549.	2.2	6
21	Quantum-like model of diauxie in Escherichia coli: Operational description of precultivation effect. Journal of Theoretical Biology, 2012, 314, 130-137.	1.7	26
22	Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli's metabolism of glucose/lactose. Systems and Synthetic Biology, 2012, 6, 1-7.	1.0	37
23	Calculating the Na+ translocating V-ATPase catalytic site affinity for substrate binding by homology modeled NtpA monomer using molecular dynamics/free energy calculation. Journal of Molecular Graphics and Modelling, 2012, 37, 59-66.	2.4	4
24	Adaptive Dynamics and Its Application to Context Dependent Systems Breaking the Classical Probability Law. Lecture Notes in Computer Science, 2012, , 160-171.	1.3	3
25	Quantum-like interference effect in gene expression: glucose-lactose destructive interference. Systems and Synthetic Biology, 2011, 5, 59-68.	1.0	29
26	Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19955-19960.	7.1	47
27	Significance of the Glutamate-139 Residue of the V-Type Na+-ATPase NtpK Subunit in Catalytic Turnover Linked with Salt Tolerance of Enterococcus hirae. Journal of Bacteriology, 2011, 193, 3657-3661.	2.2	3
28	Structure of the rotor ring modified with <i>N</i> , <i>N</i> ^{â\in2} -dicyclohexylcarbodiimide of the Na ⁺ -transporting vacuolar ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13474-13479.	7.1	41
29	Role of Asp187 and Gln190 in the Na+/proline symporter (PutP) of Escherichia coli. Journal of Biochemistry, 2011, 150, 395-402.	1.7	4
30	Reconstitution in vitro of the catalytic portion (NtpA3-B3-D-G complex) of Enterococcus hirae V-type Na+-ATPase. Biochemical and Biophysical Research Communications, 2009, 390, 698-702.	2.1	20
31	Deletion Analysis of the Subunit Genes of V-Type Na+-ATPase from Enterococcus hirae. Journal of Biochemistry, 2006, 139, 1045-1052.	1.7	6
32	Structure of the Rotor of the V-Type Na ⁺ -ATPase from <i>Enterococcus hirae</i> Science, 2005, 308, 654-659.	12.6	364
33	The Membrane Domain of the Na+-motive V-ATPase from Enterococcus hirae Contains a Heptameric Rotor. Journal of Biological Chemistry, 2003, 278, 21162-21167.	3.4	27
34	Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae. Journal of Bioenergetics and Biomembranes, 1999, 31, 7-14.	2.3	42
35	Enterococcus hiraevacuolar ATPase is expressed in response to pH as well as sodium. FEBS Letters, 1999, 454, 67-70.	2.8	14
36	Purification and Reconstitution of Na+-translocating Vacuolar ATPase from Enterococcus hirae. Journal of Biological Chemistry, 1997, 272, 24885-24890.	3.4	49

3

#	Article	IF	CITATIONS
37	The ntpJ Gene in the Enterococcus hirae ntp Operon Encodes a Component of Ktrll Potassium Transport System Functionally Independent of Vacuolar Na+-ATPase. Journal of Biological Chemistry, 1996, 271, 10042-10047.	3.4	39
38	Ordered Binding Model as a General Tight Coupling Mechanism for Bioenergy Transduction-A Hypothesis Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1993, 69, 218-223.	3.8	4