
George S Vassiliou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, The, 2005, 365, 1054-1061.	13.7	3,100
2	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	27.8	833
3	Prediction of acute myeloid leukaemia risk in healthy individuals. Nature, 2018, 559, 400-404.	27.8	617
4	A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 2016, 17, 1193-1205.	6.4	556
5	Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature, 2021, 593, 597-601.	27.8	531
6	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 601-612.	27.0	467
7	Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis. Cell Reports, 2015, 10, 1239-1245.	6.4	443
8	Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554, 62-68.	27.8	328
9	PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell, 2018, 23, 700-713.e6.	11.1	272
10	<i>PiggyBac</i> Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice. Science, 2010, 330, 1104-1107.	12.6	217
11	Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nature Genetics, 2011, 43, 470-475.	21.4	194
12	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	16.8	183
13	CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13982-13987.	7.1	172
14	Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in <i>NPM1</i> Mutant Leukemia. Cancer Discovery, 2016, 6, 1166-1181.	9.4	171
15	Clonal dynamics of haematopoiesis across the human lifespan. Nature, 2022, 606, 343-350.	27.8	160
16	Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nature Medicine, 2018, 24, 1167-1177.	30.7	157
17	METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Molecular Cell, 2021, 81, 3323-3338.e14.	9.7	153
18	Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?. DMM Disease Models and Mechanisms, 2014, 7, 941-951.	2.4	148

#	Article	IF	CITATIONS
19	Therapeutic targeting of preleukemia cells in a mouse model of <i>NPM1</i> mutant acute myeloid leukemia. Science, 2020, 367, 586-590.	12.6	145
20	The longitudinal dynamics and natural history of clonal haematopoiesis. Nature, 2022, 606, 335-342.	27.8	136
21	Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Research, 2013, 23, 1874-1884.	5.5	128
22	UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nature Genetics, 2018, 50, 883-894.	21.4	117
23	Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood, 2018, 131, 1639-1653.	1.4	114
24	Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nature Genetics, 2022, 54, 1155-1166.	21.4	109
25	HBO1 is required for the maintenance of leukaemia stem cells. Nature, 2020, 577, 266-270.	27.8	105
26	Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. Journal of Experimental Medicine, 2019, 216, 966-981.	8.5	91
27	Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Science Advances, 2016, 2, e1600760.	10.3	90
28	A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nature Genetics, 2015, 47, 47-56.	21.4	77
29	Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Blood, 2013, 121, 2289-2300.	1.4	72
30	The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nature Communications, 2019, 10, 5351.	12.8	71
31	Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood, 2018, 131, 649-661.	1.4	70
32	TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells. Genome Research, 2019, 29, 564-575.	5.5	66
33	Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood, 2017, 130, 1911-1922.	1.4	63
34	Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunology, 2014, 15, 29.	2.2	62
35	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
36	Synergistic targeting of <i>FLT3</i> mutations in AML via combined menin-MLL and FLT3 inhibition. Blood, 2020, 136, 2442-2456.	1.4	59

#	Article	IF	CITATIONS
37	A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes. Nature Genetics, 2017, 49, 730-741.	21.4	53
38	Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood, 2016, 128, e1-e9.	1.4	49
39	Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol. Haematologica, 2015, 100, 214-222.	3.5	43
40	Aging as a driver of leukemogenesis. Science Translational Medicine, 2015, 7, 306fs38.	12.4	42
41	JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics. Blood Advances, 2017, 1, 968-971.	5.2	42
42	The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene <i>Ppm1d</i> Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circulation Research, 2021, 129, 684-698.	4.5	42
43	Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nature Protocols, 2017, 12, 289-309.	12.0	41
44	Concordance for clonal hematopoiesis is limited in elderly twins. Blood, 2020, 135, 269-273.	1.4	38
45	PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nature Communications, 2019, 10, 1415.	12.8	37
46	Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood, 2021, 138, 2093-2105.	1.4	37
47	Genetic modification of primary human B cells to model high-grade lymphoma. Nature Communications, 2019, 10, 4543.	12.8	36
48	A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. Journal of Experimental Medicine, 2015, 212, 1551-1569.	8.5	35
49	Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries. Scientific Reports, 2017, 7, 2244.	3.3	35
50	SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Scientific Reports, 2019, 9, 9139.	3.3	34
51	Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Science Translational Medicine, 2017, 9, .	12.4	33
52	Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Reports, 2020, 30, 739-754.e4.	6.4	32
53	meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA Methylation. ACS Central Science, 2020, 6, 2196-2208.	11.3	31
54	Targeting MEK in vemurafenib-resistant hairy cell leukemia. Leukemia, 2019, 33, 541-545.	7.2	26

#	Article	IF	CITATIONS
55	KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia, 2021, 35, 1012-1022.	7.2	26
56	Analysis pipelines for cancer genome sequencing in mice. Nature Protocols, 2020, 15, 266-315.	12.0	25
57	Combined Influence of B-Cell Receptor Rearrangement and Somatic Hypermutation on B-Cell Class-Switch Fate in Health and in Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2018, 9, 1784.	4.8	22
58	Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression. Nature Genetics, 2021, 53, 1443-1455.	21.4	19
59	PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biology, 2020, 21, 181.	8.8	18
60	Pharmacological Inhibition of the RNA m6a Writer METTL3 As a Novel Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2019, 134, 403-403.	1.4	18
61	Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination. Nature Chemistry, 2022, 14, 754-765.	13.6	18
62	Detection of cytoplasmic nucleophosmin expression by imaging flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 896-900.	1.5	15
63	STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood, 2022, 140, 1592-1606.	1.4	15
64	NPM1c alters FLT3-D835Y localization and signaling in acute myeloid leukemia. Blood, 2019, 134, 383-388.	1.4	14
65	Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nature Communications, 2020, 11, 1407.	12.8	13
66	RNAmut: robust identification of somatic mutations in acute myeloid leukemia using RNA-sequencing. Haematologica, 2020, 105, e290-e293.	3.5	13
67	A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility forÂtesting interventions. Blood, 2022, 140, 1774-1789.	1.4	13
68	Clonal haematopoiesis is not prevalent in survivors of childhood cancer. British Journal of Haematology, 2018, 181, 537-539.	2.5	12
69	<i>IL2RA</i> Promotes Aggressiveness and Stem Cell–Related Properties of Acute Myeloid Leukemia. Cancer Research, 2020, 80, 4527-4539.	0.9	12
70	SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD–mutant AML. Blood Advances, 2021, 5, 2412-2425.	5.2	10
71	Clonal hematopoiesis is not significantly associated with COVID-19 disease severity. Blood, 2022, 140, 1650-1655.	1.4	10
72	JAK2 V617F clonal disorders: fate or chance?. Blood, 2016, 128, 1032-1033.	1.4	9

#	Article	IF	CITATIONS
73	Genetic Vulnerabilities of DNMT3AR882H in Myeloid Malignancies. Blood, 2019, 134, 111-111.	1.4	8
74	Recurrent histone mutations in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 184, 676-679.	2.5	7
75	Identification of a germline F692L drug resistance variant in cis with Flt3-internal tandem duplication in knock-in mice. Haematologica, 2016, 101, e328-e331.	3.5	5
76	The curious incident of TdT-mediated mutations in AML. Blood, 2019, 134, 2229-2231.	1.4	5
77	Evil Counteracts Anti-Leukemic and Stem Cell Inhibitory Effects of All-Trans Retinoic Acid on Flt3-ITD/Npm1c-Driven Acute Myeloid Leukemia Cells. Biomedicines, 2020, 8, 385.	3.2	4
78	Rapid parallel acquisition of somatic mutations after <i><scp>NPM</scp>1</i> in acute myeloid leukaemia evolution. British Journal of Haematology, 2017, 176, 825-829.	2.5	3
79	Genome-scale drop-out screens to identify cancer cell vulnerabilities in AML. Current Opinion in Genetics and Development, 2019, 54, 83-87.	3.3	3
80	Home and away: clonal hematopoiesis in sibling transplants. Blood, 2020, 135, 1511-1512.	1.4	3
81	Mouse Models of Myeloid Malignancies. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035535.	6.2	3
82	The <i>CADM1</i> tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11. Blood Advances, 2022, 6, 386-398.	5.2	3
83	An acquired translocation in JAK2 Val617Phe-negative essential thrombocythemia associated with autosomal spread of X-inactivation. Haematologica, 2006, 91, 1100-4.	3.5	3
84	NPM1 gene mutations can be confidently identified in blood DNA months before de novo AML onset. Blood Advances, 2022, 6, 2409-2413.	5.2	3
85	Mutational Synergy Coordinately Remodels Chromatin Accessibility, Enhancer Landscape and 3-Dimensional DNA Topology to Alter Gene Expression during Leukemia Induction. Blood, 2019, 134, 278-278.	1.4	2
86	Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML. Leukemia, 2022, 36, 2032-2041.	7.2	2
87	Design and Application of Multiplex PCR Seq for the Detection of Somatic Mutations Associated with Myeloid Malignancies. Methods in Molecular Biology, 2017, 1633, 87-99.	0.9	1
88	Triple-mutant AML: too clever by HLF?. Blood, 2019, 134, 222-224.	1.4	1
89	Npm1 Haploinsufficiency in collaboration with MEIS1 is sufficient to induce AML in mice. Blood Advances, 2022, , .	5.2	1
90	The PML-RARA fusion is not detectable in historical blood samples of acute promyelocytic leukaemia patients. Annals of Hematology, 2021, , 1.	1.8	0

#	Article	IF	CITATIONS
91	Abstract 391: Evolutionary trajectories andKRASgene dosage define pancreatic cancer phenotypes. , 2018, , .		0
92	High Prevalence of PPM1D Mutations in Therapy-Related AML/MDS Is Due to Context-Specific Clonal Hematopoiesis. Blood, 2018, 132, 746-746.	1.4	0
93	Abstract 3841: Therapeutic targeting of <i>FLT3</i> mutations in AML via menin-MLL1 and FLT3 inhibition. , 2019, , .		0