Yifei Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257625/publications.pdf

Version: 2024-02-01

623734 434195 1,127 33 14 31 citations h-index g-index papers 33 33 33 1220 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. ACS Applied Materials & (2017, 9, 17456-17465.)	8.0	183
2	Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews, 2018, 5, .	11.3	129
3	Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures. Biofabrication, 2016, 8, 025016.	7.1	123
4	Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Materials Science and Engineering C, 2017, 80, 313-325.	7.3	114
5	Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20057-20066.	8.0	110
6	Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10461-10470.	8.0	79
7	Study of extrudability and standoff distance effect during nanoclay-enabled direct printing. Bio-Design and Manufacturing, 2018, 1, 123-134.	7.7	41
8	Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension. ACS Applied Materials & Amp; Interfaces, 2019, 11, 29207-29217.	8.0	38
9	Study on the Hydrophobic Property of Shark-Skin-Inspired Micro-Riblets. Journal of Bionic Engineering, 2014, 11, 296-302.	5.0	35
10	Experimental study of polymeric stent fabrication using homemade 3D printing system. Polymer Engineering and Science, 2019, 59, 1122-1131.	3.1	28
11	Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomaterials Science and Engineering, 2021, 7, 4736-4756.	5. 2	28
12	Study on extrudate swell of polypropylene in double-lumen micro profile extrusion. Journal of Materials Processing Technology, 2015, 225, 357-368.	6.3	27
13	Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures. Materials Science and Engineering C, 2018, 89, 65-74.	7.3	21
14	Structural Design of Mechanical Property for Biodegradable Polymeric Stent. Advances in Materials Science and Engineering, 2019, 2019, 1-14.	1.8	17
15	Printability study of self-supporting graphene oxide-laponite nanocomposites for 3D printing applications. International Journal of Advanced Manufacturing Technology, 2021, 114, 343-355.	3.0	15
16	Effect of Die Lip Geometry on Polymer Extrudate Deformation in Complex Small Profile Extrusion. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	14
17	Study on viscosity of polymer melt flowing through microchannels considering the wallâ€slip effect. Polymer Engineering and Science, 2012, 52, 1806-1814.	3.1	13
18	Nanoclay Suspension-Enabled Extrusion Bioprinting of Three-Dimensional Soft Structures. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2,2	13

#	Article	IF	Citations
19	Cross-section design of multi-lumen extrusion dies: study on the effects of die swell and gas flow rate of the lumen. Microsystem Technologies, 2017, 23, 5093-5104.	2.0	11
20	Study on the bending behavior of biodegradable metal cerebral vascular stents using finite element analysis. Journal of Biomechanics, 2020, 108, 109856.	2.1	11
21	Preparation and mechanism of freeâ€radical/cationic hybrid photosensitive resin with high tensile strength for threeâ€dimensional printing applications. Journal of Applied Polymer Science, 2021, 138, 49881.	2.6	11
22	A multi-dimensional non-uniform corrosion model for bioabsorbable metallic vascular stents. Acta Biomaterialia, 2021, 131, 572-580.	8.3	11
23	Unified parametric modeling of origami-based tube. Thin-Walled Structures, 2018, 133, 226-234.	5.3	10
24	Effect of characteristic scale on the extrudate swelling behavior of polypropylene melt in a microâ€extrusion process. Polymer Engineering and Science, 2021, 61, 1864-1881.	3.1	8
25	Theoretical model of pediatric orbital trapdoor fractures and provisional personalized 3D printing-assisted surgical solution. Bioactive Materials, 2021, 6, 559-567.	15.6	7
26	Investigation on Microstructures and Mechanical Properties of Isotactic Polypropylene Parts Fabricated by Different Process Conditions with Different Aging Periods. Polymers, 2020, 12, 2828.	4.5	6
27	Fabrication of Double-Layered Alginate Capsules Using Coaxial Nozzle. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.7	5
28	Water soluble photocurable carboxymethyl celluloseâ€based bioactive hydrogels for digital light processing. Journal of Applied Polymer Science, 2022, 139, .	2.6	5
29	Material Extrusion Advanced Manufacturing of Helical Artificial Muscles from Shape Memory Polymer. Machines, 2022, 10, 497.	2.2	4
30	Theoretical and experimental study on threeâ€layered polymeric balloon catheter processing. Polymer Engineering and Science, 2020, 60, 3244-3257.	3.1	3
31	3D Printing of Biodegradable Polymer Vascular Stents: A Review. , 2022, 1, 100020.		3
32	3-D printed X-band Yagi-Uda antenna. , 2018, , .		2
33	Effects of process conditions on tensile strength and crystallinity of polymeric parts fabricated using ultrasonic <scp>vibrationâ€essisted</scp> injection molding. Polymer Engineering and Science, 2022, 62, 2119-2130.	3.1	2