Giedre Krenciute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature, 2022, 607, 135-141.	27.8	65
2	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	1.2	63
3	Hypoxia-inducible CAR expression: An answer to the on-target/off-tumor dilemma?. Cell Reports Medicine, 2021, 2, 100244.	6.5	7
4	Abstract 1543: Mining cancer-specific isoforms as CAR T-cell therapy targets for pediatric solid and brain tumors. , 2021, , .		1
5	Antitumor Effects of CAR T Cells Redirected to the EDB Splice Variant of Fibronectin. Cancer Immunology Research, 2021, 9, 279-290.	3.4	24
6	Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 TÂcell effector differentiation. Cell Reports, 2021, 37, 109796.	6.4	14
7	T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Frontiers in Oncology, 2021, 11, 718030.	2.8	5
8	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	12.4	123
9	What is the Optimal Design-Build-Test Cycle for Clinically Relevant Synthetic CAR T Cell Therapies?. Cell Systems, 2020, 11, 212-214.	6.2	0
10	Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of Translational Medicine, 2020, 18, 428.	4.4	51
11	Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Molecular Therapy - Oncolytics, 2020, 18, 202-214.	4.4	37
12	CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nature Biotechnology, 2020, 38, 1317-1327.	17.5	149
13	CRISPR-Mediated Non-Viral Site-Specific Gene Integration and Expression in T Cells: Protocol and Application for T-Cell Therapy. Cancers, 2020, 12, 1704.	3.7	21
14	MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight, 2020, 5, .	5.0	34
15	Next Generation CAR T Cells for the Immunotherapy of High-Grade Glioma. Frontiers in Oncology, 2019, 9, 69.	2.8	68
16	Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma. Molecular Therapy - Methods and Clinical Development, 2018, 9, 70-80.	4.1	87
17	Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma. Molecular Therapy, 2018, 26, 986-995.	8.2	55
18	CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?. Expert Review of Anticancer Therapy, 2018, 18, 451-461.	2.4	17

GIEDRE KRENCIUTE

#	Article	IF	CITATIONS
19	Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunology Research, 2018, 6, 47-58.	3.4	93
20	The Landscape of CAR T Cells Beyond Acute Lymphoblastic Leukemia for Pediatric Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 830-837.	3.8	20
21	Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants. Cancer Immunology Research, 2017, 5, 571-581.	3.4	232
22	Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Reports, 2017, 21, 17-26.	6.4	203
23	Inducible Activation of MyD88 and CD40 in CAR T Cells Results in Controllable and Potent Antitumor Activity in Preclinical Solid Tumor Models. Cancer Discovery, 2017, 7, 1306-1319.	9.4	125
24	IMMU-17. TRANSGENIC EXPRESSION OF IL15 IMPROVES ANTIGLIOMA ACTIVITY OF IL13RÎ ^{&} 2-CAR T CELLS. Neuro-Oncology, 2017, 19, iv31-iv31.	1.2	1
25	IMMU-20. SELECTING AN EPHA2-CAR FOR THE IMMUNOTHERAPY OF DIPG AND GBM. Neuro-Oncology, 2017, 19, iv32-iv32.	1.2	0
26	IMST-02. TRANSGENIC EXPRESSION OF IL15 IMPROVES ANTIGLIOMA ACTIVITY OF IL13Rα2-CAR T CELLS BUT HIGHLIGHTS THE NEED TO TARGET MULTIPLE GLIOMA-ASSOCIATED ANTIGENS. Neuro-Oncology, 2016, 18, vi86-vi86.	1.2	0
27	76. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells. Molecular Therapy, 2016, 24, S33.	8.2	0
28	Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Glioma. Molecular Therapy, 2016, 24, 354-363.	8.2	72
29	Charachterization and functional analysis of scFv-based CARs to redirect T cells to IL13RÎ ± 2 -positive glioma. , 2015, 3, .		0
30	282. A scFv-Based CAR To Redirect T Cells To IL13Ra2-Positive Glioma. Molecular Therapy, 2015, 23, S113.	8.2	1
31	IM-02 * A scFv-BASED CAR TO REDIRECT T CELLS TO IL13RÂ2-POSITIVE PEDIATRIC GLIOMA. Neuro-Oncology, 2015, 17, iii15-iii15.	1.2	0
32	Nuclear BAG6-UBL4A-GET4 Complex Mediates DNA Damage Signaling and Cell Death. Journal of Biological Chemistry, 2013, 288, 20547-20557.	3.4	32
33	Analysis of the Human Endogenous Coregulator Complexome. Cell, 2011, 145, 787-799.	28.9	383