Paul Overton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256689/publications.pdf

Version: 2024-02-01

56 papers 3,271 citations

186265
28
h-index

56 g-index

56 all docs 56
docs citations

56 times ranked 2858 citing authors

#	Article	IF	CITATIONS
1	Burst firing in midbrain dopaminergic neurons. Brain Research Reviews, 1997, 25, 312-334.	9.0	430
2	A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nature Neuroscience, 2003, 6, 974-980.	14.8	304
3	How Visual Stimuli Activate Dopaminergic Neurons at Short Latency. Science, 2005, 307, 1476-1479.	12.6	283
4	Iontophoretically administered drugs acting at the N-methyl-D-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse, 1992, 10, 131-140.	1.2	206
5	Segregated Anatomical Input to Sub-Regions of the Rodent Superior Colliculus Associated with Approach and Defense. Frontiers in Neuroanatomy, 2012, 6, 9.	1.7	127
6	Neurovascular coupling is brain region-dependent. Neurolmage, 2012, 59, 1997-2006.	4.2	123
7	Is Disgust a Homogeneous Emotion?. Motivation and Emotion, 2006, 30, 31-41.	1.3	122
8	Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience, 1999, 92, 245-254.	2.3	116
9	Self-disgust mediates the relationship between dysfunctional cognitions and depressive symptomatology Emotion, 2008, 8, 379-385.	1.8	112
10	Antagonism of NMDA receptors but not AMPA/kainate receptors blocks bursting in dopaminergic neurons induced by electrical stimulation of the prefrontal cortex. Journal of Neural Transmission, 1996, 103, 889-904.	2.8	87
11	Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience, 2006, 139, 1479-1493.	2.3	84
12	Interactions between the midbrain superior colliculus and the basal ganglia. Frontiers in Neuroanatomy, 2010, 4, .	1.7	84
13	A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138, 221-234.	2.3	69
14	The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons. Neuroscience, 2010, 168, 263-272.	2.3	66
15	Short-Latency Visual Input to the Subthalamic Nucleus Is Provided by the Midbrain Superior Colliculus. Journal of Neuroscience, 2009, 29, 5701-5709.	3. 6	65
16	Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Research, 1995, 674, 63-74.	2.2	58
17	Neurokinin agonists differentially affect A9 and A10 dopamine cells in the rat. European Journal of Pharmacology, 1992, 213, 165-166.	3.5	54
18	Preferential occupation of mineralocorticoid receptors by corticosterone enhances glutamate-induced burst firing in rat midbrain dopaminergic neurons. Brain Research, 1996, 737, 146-154.	2.2	53

#	Article	IF	CITATIONS
19	Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy—I. Mapping of dorsal midbrain with bicuculline. Neuroscience, 1992, 46, 379-390.	2.3	52
20	When disgust leads to dysphoria: A three-wave longitudinal study assessing the temporal relationship between self-disgust and depressive symptoms. Cognition and Emotion, 2013, 27, 900-913.	2.0	48
21	Detection of visual stimuli in far periphery by rats: possible role of superior colliculus. Experimental Brain Research, 1985, 59, 559-69.	1.5	44
22	Collicular dysfunction in attention deficit hyperactivity disorder. Medical Hypotheses, 2008, 70, 1121-1127.	1.5	42
23	Self-esteem and self-disgust both mediate the relationship between dysfunctional cognitions and depressive symptoms. Motivation and Emotion, 2010, 34, 399-406.	1.3	42
24	A pharmacological analysis of the burst events induced in midbrain dopaminergic neurons by electrical stimulation of the prefrontal cortex in the rat. Journal of Neural Transmission, 1996, 103, 523-540.	2.8	41
25	Alterations in excitatory amino acid-mediated regulation of midbrain dopaminergic neurones induced by chronic psychostimulant administration and stress: relevance to behavioural sensitization and drug addiction. Addiction Biology, 1998, 3, 109-135.	2.6	36
26	Do non-dopaminergic neurons in the ventral tegmental area play a role in the responses elicited in A10 dopaminergic neurons by electrical stimulation of the prefrontal cortex?. Experimental Brain Research, 1998, 118, 466-476.	1.5	35
27	Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. Journal of Comparative Neurology, 2007, 500, 1034-1049.	1.6	34
28	N-Metfayl-D-aspartate increases the excitability of nigrostriatal dopamine terminals. European Journal of Pharmacology, 1991, 201, 117-120.	3.5	30
29	Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures. Neurolmage, 2014, 97, 62-70.	4.2	30
30	Sensory regulation of dopaminergic cell activity: Phenomenology, circuitry and function. Neuroscience, 2014, 282, 1-12.	2.3	27
31	Self-affirming trait kindness regulates disgust toward one's physical appearance. Body Image, 2015, 12, 98-107.	4.3	26
32	Haemodynamic responses to sensory stimulation are enhanced following acute cocaine administration. NeuroImage, 2004, 22, 1744-1753.	4.2	25
33	Cocaine preferentially enhances sensory processing in the upper layers of the primary sensory cortex. Neuroscience, 2007, 146, 841-851.	2.3	25
34	Impulse Control Disorders in Parkinson's Disease: A Psychosocial Perspective. Journal of Clinical Psychology in Medical Settings, 2012, 19, 338-346.	1.4	24
35	Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by d-amphetamine. Neuroscience, 2014, 274, 289-298.	2. 3	24
36	Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience, 2009, 164, 1369-1376.	2.3	23

#	Article	IF	CITATIONS
37	Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures. Epilepsia, 2014, 55, 1423-1430.	5.1	22
38	Altered visual processing in a rodent model of Attention-Deficit Hyperactivity Disorder. Neuroscience, 2015, 303, 364-377.	2.3	21
39	The effect of disgust-related side-effects on symptoms of depression and anxiety in people treated for cancer: a moderated mediation model. Journal of Behavioral Medicine, 2016, 39, 560-573.	2.1	19
40	Detection of visual stimuli after lesions of the superior colliculus in the rat; deficit not confined to the far periphery. Behavioural Brain Research, 1988, 31, 1-15.	2.2	18
41	The Effects of Focal Epileptic Activity on Regional Sensory-Evoked Neurovascular Coupling and Postictal Modulation of Bilateral Sensory Processing. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1595-1604.	4.3	18
42	Possible intermixing of neurons from the subthalamic nucleus and substantia nigra pars compacta in the guinea-pig. Experimental Brain Research, 1995, 107, 151-65.	1.5	17
43	d-Amphetamine depresses visual responses in the rat superior colliculus: a possible mechanism for amphetamine-induced decreases in distractibility. Journal of Neural Transmission, 2008, 115, 377-387.	2.8	15
44	Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinson's disease. Neuroscience, 2013, 252, 277-288.	2.3	14
45	Efficient fitting of conductance-based model neurons from somatic current clamp. Journal of Computational Neuroscience, 2012, 32, 1-24.	1.0	12
46	Cocaine administration produces a protracted decoupling of neural and haemodynamic responses to intense sensory stimuli. Neuroscience, 2005, 132, 361-374.	2.3	10
47	Impulse control disorders in Parkinson's disease: Predominant role of psychological determinants. Psychology and Health, 2016, 31, 1391-1414.	2.2	10
48	Food-related contextual factors substantially modify the disgust response. Food Quality and Preference, 2007, 18, 183-189.	4.6	9
49	Cortical regulation of dopaminergic neurons: role of the midbrain superior colliculus. Journal of Neurophysiology, 2014, 111, 755-767.	1.8	9
50	Local injection of a glutamate uptake inhibitor into the ventral tegmental area produces sensitization to the behavioural effects of d-amphetamine. Neuroscience, 2005, 134, 361-367.	2.3	6
51	Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Research, 2015, 1629, 10-25.	2.2	5
52	Encounters with aggressive conspecifics enhance the locomotor-activating effects of cocaine in the rat. Addiction Biology, 1999, 4, 437-441.	2.6	4
53	Cocaine facilitates craving via an action on sensory processing. Bioscience Hypotheses, 2008, 1, 70-77.	0.2	3
54	A simple method for characterizing passive and active neuronal properties: application to striatal neurons. European Journal of Neuroscience, 2011, 34, 1390-1405.	2.6	3

#	Article	IF	CITATION
55	Early Postnatal Ethanol Exposure: Glutamatergic Excitotoxic Cell Death During Acute Withdrawal. Neurophysiology, 2012, 44, 376-386.	0.3	3
56	D-Amphetamine potentiates muscimol-induced disinhibition of A10 dopaminergic neurons in the rat. Journal of Neural Transmission, 2000, 107, 1381-1391.	2.8	2