
Christian Ungermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Assessment of the Accuracy of Subunit Counting in Biomolecular Complexes Using Automated Single-Molecule Brightness Analysis. Journal of Physical Chemistry Letters, 2022, 13, 822-829.	2.1	6
2	Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
3	A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. Journal of Cell Biology, 2022, 221, .	2.3	14
4	The yeast LYST homolog Bph1 is a Rab5 effector and prevents Atg8 lipidation at endosomes. Journal of Cell Science, 2022, , .	1.2	3
5	The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. Journal of Cell Biology, 2022, 221, .	2.3	6
6	Vesicle transport: Exocyst follows PIP2 to tether membranes. Current Biology, 2022, 32, R748-R750.	1.8	2
7	TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Current Biology, 2021, 31, 297-309.e8.	1.8	31
8	TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Molecular Cell, 2021, 81, 2705-2721.e8.	4.5	25
9	Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. Journal of Cell Biology, 2021, 220, .	2.3	64
10	An online gathering about the latest on molecular membrane biology. Journal of Biological Chemistry, 2021, 297, 101237.	1.6	0
11	Nanoscopic anatomy of dynamic multi-protein complexes at membranes resolved by graphene-induced energy transfer. ELife, 2021, 10, .	2.8	19
12	Flexible open conformation of the AP-3 complex explains its role in cargo recruitment at the Golgi. Journal of Biological Chemistry, 2021, 297, 101334.	1.6	8
13	Subunit exchange among endolysosomal tethering complexes is linked to contact site formation at the vacuole. Molecular Biology of the Cell, 2021, 32, br14.	0.9	11
14	A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. Journal of Cell Science, 2020, 133, .	1.2	14
15	APâ€3 vesicle uncoating occurs after HOPSâ€dependent vacuole tethering. EMBO Journal, 2020, 39, e105117.	3.5	21
16	Function of the <scp>SNARE</scp> Ykt6 on autophagosomes requires the Dsl1 complex and the Atg1 kinase complex. EMBO Reports, 2020, 21, e50733.	2.0	22
17	A conserved and regulated mechanism drives endosomal Rab transition. ELife, 2020, 9, .	2.8	54
18	Structure of membrane tethers and their role in fusion. Traffic, 2019, 20, 479-490.	1.3	63

#	Article	IF	CITATIONS
19	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	5.8	435
20	The multi-functional SNARE protein Ykt6 in autophagosomal fusion processes. Cell Cycle, 2019, 18, 639-651.	1.3	25
21	Control of vacuole membrane homeostasis by a resident PI-3,5-kinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4684-4689.	3.3	19
22	Multisubunit tethers in membrane fusion. Current Biology, 2018, 28, R417-R420.	1.8	25
23	A guanine nucleotide exchange factor (GEF) limits Rab GTPase–driven membrane fusion. Journal of Biological Chemistry, 2018, 293, 731-739.	1.6	36
24	Coordination of Autophagosome–Lysosome Fusion byÂAtg8 Family Members. Current Biology, 2018, 28, R512-R518.	1.8	75
25	Cargo induces retromer-mediated membrane remodeling on membranes. Molecular Biology of the Cell, 2018, 29, 2709-2719.	0.9	19
26	Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. Journal of Cell Biology, 2018, 217, 2743-2763.	2.3	194
27	Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure. ELife, 2018, 7, .	2.8	61
28	Atg9 proteins, not so different after all. Autophagy, 2018, 14, 1456-1459.	4.3	13
29	Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends in Cell Biology, 2018, 28, 957-970.	3.6	270
30	Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion. Molecular Biology of the Cell, 2018, 29, 2190-2200.	0.9	43
31	A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. Journal of Cell Biology, 2018, 217, 3670-3682.	2.3	67
32	Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. Developmental Cell, 2018, 45, 621-636.e7.	3.1	109
33	Autophagosome Maturation and Fusion. Journal of Molecular Biology, 2017, 429, 486-496.	2.0	185
34	Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion. Molecular Biology of the Cell, 2017, 28, 783-791.	0.9	32
35	Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1–Ccz1. Nature Communications, 2017, 8, 14034.	5.8	59
36	A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature, 2017, 551, 634-638.	13.7	92

CHRISTIAN UNGERMANN

#	Article	IF	CITATIONS
37	Membrane contact sites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1435-1438.	1.9	4
38	Multivalent Rab interactions determine tether-mediated membrane fusion. Molecular Biology of the Cell, 2017, 28, 322-332.	0.9	54
39	Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nature Communications, 2017, 8, 295.	5.8	70
40	Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling. Cellular Microbiology, 2016, 18, 1251-1267.	1.1	52
41	Vacuole membrane contact sites and domains: emerging hubs to coordinate organelle function with cellular metabolism. Biochemical Society Transactions, 2016, 44, 528-533.	1.6	14
42	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
43	Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles. Journal of Cell Science, 2015, 128, 645-55.	1.2	44
44	The I-BAR protein Ivy1 is an effector of the Rab7 GTPase Ypt7 involved in vacuole membrane homeostasis. Journal of Cell Science, 2015, 128, 2278-2292.	1.2	40
45	The Role of Palmitoylation for Protein Recruitment to the Inner Membrane Complex of the Malaria Parasite. Journal of Biological Chemistry, 2015, 290, 1712-1728.	1.6	66
46	The Habc Domain of the SNARE Vam3 Interacts with the HOPS Tethering Complex to Facilitate Vacuole Fusion. Journal of Biological Chemistry, 2015, 290, 5405-5413.	1.6	35
47	Functional homologies in vesicle tethering. FEBS Letters, 2015, 589, 2487-2497.	1.3	27
48	StARTing to understand membrane contact sites. Trends in Cell Biology, 2015, 25, 497-498.	3.6	14
49	BORC and BLOC-1: Shared Subunits in Trafficking Complexes. Developmental Cell, 2015, 33, 121-122.	3.1	12
50	vCLAMPs—an intimate link between vacuoles and mitochondria. Current Opinion in Cell Biology, 2015, 35, 30-36.	2.6	17
51	Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole. Molecular Biology of the Cell, 2015, 26, 2535-2549.	0.9	29
52	Hypomyelination and developmental delay associated with <i>VPS11</i> mutation in Ashkenazi-Jewish patients. Journal of Medical Genetics, 2015, 52, 749-753.	1.5	41
53	Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport. Molecular Biology of the Cell, 2015, 26, 1357-1370.	0.9	29
54	A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: From yeast to man. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 262-268.	2.3	32

#	Article	IF	CITATIONS
55	The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin fold-Rab interface and association with PI-3-P-positive membranes. Journal of Cell Science, 2014, 127, 1043-51.	1.2	84
56	Function of the Mon1-Ccz1 complex on endosomes. Small GTPases, 2014, 5, e972861.	0.7	7
57	Tracking of the dynamic localization of the Rab-specific HOPS subunits reveal their distinct interaction with Ypt7 and vacuoles. Cellular Logistics, 2014, 4, e29191.	0.9	15
58	Function and Regulation of the Endosomal Fusion and Fission Machineries. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016832-a016832.	2.3	103
59	Structural Identification of the Vps18 β-Propeller Reveals a Critical Role in the HOPS Complex Stability and Function. Journal of Biological Chemistry, 2014, 289, 33503-33512.	1.6	13
60	The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. Cellular Logistics, 2014, 4, e970840.	0.9	30
61	Endocytic Rabs in membrane trafficking and signaling. Biological Chemistry, 2014, 395, 327-333.	1.2	60
62	Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3. Molecular Biology of the Cell, 2014, 25, 1608-1619.	0.9	54
63	Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria. Developmental Cell, 2014, 30, 86-94.	3.1	285
64	Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Current Opinion in Cell Biology, 2014, 29, 61-66.	2.6	74
65	Atg18 function in autophagy is regulated by specific sites within its β-propeller. Journal of Cell Science, 2013, 126, 593-604.	1.2	79
66	Cellular microcompartments constitute general suborganellar functional units in cells. Biological Chemistry, 2013, 394, 151-161.	1.2	27
67	CORVET and HOPS tethering complexes – coordinators of endosome and lysosome fusion. Journal of Cell Science, 2013, 126, 1307-1316.	1.2	430
68	The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. Journal of Cell Biology, 2013, 201, 97-111.	2.3	42
69	The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3823-3828.	3.3	83
70	Functional Separation of Endosomal Fusion Factors and the Class C Core Vacuole/Endosome Tethering (CORVET) Complex in Endosome Biogenesis. Journal of Biological Chemistry, 2013, 288, 5166-5175.	1.6	57
71	Guanine Nucleotide Exchange Factors (GEFs) Have a Critical but Not Exclusive Role in Organelle Localization of Rab GTPases. Journal of Biological Chemistry, 2013, 288, 28704-28712.	1.6	65
72	The N-Terminal Domains of Vps3 and Vps8 Are Critical for Localization and Function of the CORVET Tethering Complex on Endosomes. PLoS ONE, 2013, 8, e67307.	1.1	21

#	Article	IF	CITATIONS
73	Subunit Organisation of In Vitro Reconstituted HOPS and CORVET Multisubunit Membrane Tethering Complexes. PLoS ONE, 2013, 8, e81534.	1.1	17
74	The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles. Molecular Biology of the Cell, 2012, 23, 2516-2526.	0.9	48
75	Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1991-1996.	3.3	227
76	Leucyl-tRNA Synthetase Controls TORC1 via the EGO Complex. Molecular Cell, 2012, 46, 105-110.	4.5	308
77	An Overexpression Screen in <i>Saccharomyces cerevisiae</i> Identifies Novel Genes that Affect Endocytic Protein Trafficking. Traffic, 2011, 12, 1592-1603.	1.3	27
78	Membrane dynamics and fusion at late endosomes and vacuoles – Rab regulation, multisubunit tethering complexes and SNAREs. European Journal of Cell Biology, 2011, 90, 779-785.	1.6	60
79	Rab GTPases and tethering in the yeast endocytic pathway. Small GTPases, 2011, 2, 182-186.	0.7	25
80	The yeast Batten disease orthologue Btn1 controls endosome–Golgi retrograde transport via SNARE assembly. Journal of Cell Biology, 2011, 195, 203-215.	2.3	44
81	HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Molecular Biology of the Cell, 2011, 22, 2601-2611.	0.9	80
82	The Dsl1 Protein Tethering Complex Is a Resident Endoplasmic Reticulum Complex, Which Interacts with Five Soluble NSF (N-Ethylmaleimide-sensitive Factor) Attachment Protein Receptors (SNAREs). Journal of Biological Chemistry, 2011, 286, 25039-25046.	1.6	43
83	The Mon1-Ccz1 Complex Is the GEF of the Late Endosomal Rab7 Homolog Ypt7. Current Biology, 2010, 20, 1654-1659.	1.8	327
84	Multisubunit Tethering Complexes and Their Role in Membrane Fusion. Current Biology, 2010, 20, R943-R952.	1.8	185
85	Defined Subunit Arrangement and Rab Interactions Are Required for Functionality of the HOPS Tethering Complex. Traffic, 2010, 11, 1334-1346.	1.3	119
86	Phosphorylation of a membrane curvature–sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. Journal of Cell Biology, 2010, 191, 845-859.	2.3	107
87	The Rab GTPase Ypt7 is linked to retromer-mediated receptor recycling and fusion at the yeast late endosome. Journal of Cell Science, 2010, 123, 4085-4094.	1.2	100
88	Guiding Endosomal Maturation. Cell, 2010, 141, 404-406.	13.5	23
89	The CORVET Subunit Vps8 Cooperates with the Rab5 Homolog Vps21 to Induce Clustering of Late Endosomal Compartments. Molecular Biology of the Cell, 2009, 20, 5276-5289.	0.9	83
90	Vps41 Phosphorylation and the Rab Ypt7 Control the Targeting of the HOPS Complex to Endosome–Vacuole Fusion Sites. Molecular Biology of the Cell, 2009, 20, 1937-1948.	0.9	82

CHRISTIAN UNGERMANN

#	Article	IF	CITATIONS
91	Depalmitoylation of Ykt6 Prevents its Entry into the Multivesicular Body Pathway. Traffic, 2008, 9, 1510-1521.	1.3	35
92	Chapter Thirteen Purification and In Vitro Analysis of Yeast Vacuoles. Methods in Enzymology, 2008, 451, 177-196.	0.4	35
93	Farnesylation of the SNARE Protein Ykt6 Increases Its Stability and Helical Folding. Journal of Molecular Biology, 2008, 377, 1334-1345.	2.0	33
94	Yeast vacuole fusion: A model system for eukaryotic endomembrane dynamics. Autophagy, 2008, 4, 5-19.	4.3	92
95	The CORVET Tethering Complex Interacts with the Yeast Rab5 Homolog Vps21 and Is Involved in Endo-Lysosomal Biogenesis. Developmental Cell, 2007, 12, 739-750.	3.1	250
96	Palmitoylation determines the function of Vac8 at the yeast vacuole. Journal of Cell Science, 2006, 119, 2477-2485.	1.2	49
97	The SNARE Ykt6 is released from yeast vacuoles during an early stage of fusion. EMBO Reports, 2005, 6, 245-250.	2.0	32
98	The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. Journal of Cell Biology, 2005, 168, 401-414.	2.3	129
99	The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17366-17371.	3.3	53
100	ATP-independent Control of Vac8 Palmitoylation by a SNARE Subcomplex on Yeast Vacuoles. Journal of Biological Chemistry, 2005, 280, 15348-15355.	1.6	17
101	The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO Journal, 2004, 23, 45-53.	3.5	72
102	On the mechanism of protein palmitoylation. EMBO Reports, 2004, 5, 1053-1057.	2.0	117
103	The Transmembrane Domain of Vam3 Affects the Composition ofcis- and trans-SNARE Complexes to Promote Homotypic Vacuole Fusion. Journal of Biological Chemistry, 2003, 278, 1656-1662.	1.6	37
104	A cycle of Vam7p release from and PtdIns 3-P–dependent rebinding to the yeast vacuole is required for homotypic vacuole fusion. Journal of Cell Biology, 2002, 157, 79-90.	2.3	104
105	The N-terminal Domain of the t-SNARE Vam3p Coordinates Priming and Docking in Yeast Vacuole Fusion. Molecular Biology of the Cell, 2001, 12, 3375-3385.	0.9	51
106	Proteins Needed for Vesicle Budding from the Golgi Complex Are Also Required for the Docking Step of Homotypic Vacuole Fusion. Journal of Cell Biology, 2000, 148, 1223-1230.	2.3	86
107	The Docking Stage of Yeast Vacuole Fusion Requires the Transfer of Proteins from a Cis-Snare Complex to a Rab/Ypt Protein. Journal of Cell Biology, 2000, 148, 1231-1238.	2.3	188
108	Three v-SNAREs and Two t-SNAREs, Present in a Pentameric cis-SNARE Complex on Isolated Vacuoles, Are Essential for Homotypic Fusion. Journal of Cell Biology, 1999, 145, 1435-1442.	2.3	151

#	Article	IF	CITATIONS
109	Defining the functions of trans-SNARE pairs. Nature, 1998, 396, 543-548.	13.7	329
110	A Vacuolar v–t-SNARE Complex, the Predominant Form In Vivo and on Isolated Vacuoles, Is Disassembled and Activated for Docking and Fusion. Journal of Cell Biology, 1998, 140, 61-69.	2.3	235
111	Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature, 1997, 387, 199-202.	13.7	451