
Débora Colombari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Frontiers in Physiology, 2014, 5, 238.	2.8	161
2	Role of Endogenous Carbon Monoxide in Central Regulation of Arterial Pressure. Hypertension, 1997, 30, 962-967.	2.7	75
3	Kidney-Induced Hypertension Depends on Superoxide Signaling in the Rostral Ventrolateral Medulla. Hypertension, 2010, 56, 290-296.	2.7	67
4	Transcription Factor CREB3L1 Regulates Vasopressin Gene Expression in the Rat Hypothalamus. Journal of Neuroscience, 2014, 34, 3810-3820.	3.6	66
5	Salt appetite: interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms. Brain Research, 1998, 801, 29-35.	2.2	60
6	GABAA receptor activation in the lateral parabrachial nucleus induces water and hypertonic NaCl intake. Neuroscience, 2005, 134, 725-735.	2.3	53
7	Leptin into the ventrolateral medulla facilitates chemorespiratory response in leptinâ€deficient (ob/ob) mice. Acta Physiologica, 2014, 211, 240-248.	3.8	48
8	Resistance training prevents the cardiovascular changes caused by high-fat diet. Life Sciences, 2016, 146, 154-162.	4.3	43
9	Cardiovascular responses to hydrogen peroxide into the nucleus tractus solitarius. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R462-R469.	1.8	35
10	Increased Expression of Angiotensin II Type 2 Receptors in the Solitary–Vagal Complex Blunts Renovascular Hypertension. Hypertension, 2014, 64, 777-783.	2.7	35
11	Maternal Protein Restriction Increases Respiratory and Sympathetic Activities and Sensitizes Peripheral Chemoreflex in Male Rat Offspring. Journal of Nutrition, 2015, 145, 907-914.	2.9	34
12	Control of respiratory and cardiovascular functions by leptin. Life Sciences, 2015, 125, 25-31.	4.3	28
13	Anteroventral third ventricle lesions impair cardiovascular responses to intravenous hypertonic saline infusion. Autonomic Neuroscience: Basic and Clinical, 2005, 117, 9-16.	2.8	27
14	Alpha2-adrenergic activation in the lateral parabrachial nucleus induces NaCl intake under conditions of systemic hyperosmolarity. Neuroscience, 2006, 142, 21-28.	2.3	27
15	Activation of the brain melanocortin system is required for leptinâ€induced modulation of chemorespiratory function. Acta Physiologica, 2015, 213, 893-901.	3.8	27
16	Cardiovascular responses produced by central injection of hydrogen peroxide in conscious rats. Brain Research Bulletin, 2006, 71, 37-44.	3.0	26
17	Adrenergic mechanisms of the Kölliker-Fuse/A7 area on the control of water and sodium intake. Neuroscience, 2009, 164, 370-379.	2.3	26
18	Inhibitory mechanism of the nucleus of the solitary tract involved in the control of cardiovascular, dipsogenic, hormonal, and renal responses to hyperosmolality. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R531-R542.	1.8	26

#	Article	IF	CITATIONS
19	GABAergic mechanisms of the lateral parabrachial nucleus on sodium appetite. Brain Research Bulletin, 2007, 73, 238-247.	3.0	25
20	Lesions in the central amygdala impair sodium intake induced by the blockade of the lateral parabrachial nucleus. Brain Research, 2010, 1332, 57-64.	2.2	24
21	Facilitation of breathing by leptin effects in the central nervous system. Journal of Physiology, 2016, 594, 1617-1625.	2.9	24
22	Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats. Experimental Physiology, 2006, 91, 995-1005.	2.0	23
23	Baclofen into the lateral parabrachial nucleus induces hypertonic sodium chloride and sucrose intake in rats. Neuroscience, 2011, 183, 160-170.	2.3	22
24	Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. Journal of Physiology, 2011, 589, 4457-4471.	2.9	22
25	Differential modulation of sympathetic and respiratory activities by cholinergic mechanisms in the nucleus of the solitary tract in rats. Experimental Physiology, 2014, 99, 743-758.	2.0	22
26	Afferent pathways in cardiovascular adjustments induced by volume expansion in anesthetized rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R884-R890.	1.8	21
27	Central muscarinic receptor subtypes involved in pilocarpineâ€induced salivation, hypertension and water intake. British Journal of Pharmacology, 2008, 155, 1256-1263.	5.4	21
28	Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides, 2016, 60, 29-36.	2.2	20
29	Leptin: Master Regulator of Biological Functions that Affects Breathing. , 2020, 10, 1047-1083.		19
30	Importance of the commissural nucleus of the solitary tract in renovascular hypertension. Hypertension Research, 2019, 42, 587-597.	2.7	18
31	A2 Noradrenergic Lesions Prevent Renal Sympathoinhibition Induced by Hypernatremia in Rats. PLoS ONE, 2012, 7, e37587.	2.5	18
32	Physiological and Transcriptomic Changes in the Hypothalamic-Neurohypophysial System after 24 h of Furosemide-Induced Sodium Depletion. Neuroendocrinology, 2021, 111, 70-86.	2.5	17
33	The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain, Behavior, and Immunity, 2022, 102, 370-386.	4.1	17
34	Macrophage migration inhibitory factor in the nucleus of solitary tract decreases blood pressure in SHRs. Cardiovascular Research, 2013, 97, 153-160.	3.8	16
35	Increased Expression of Macrophage Migration Inhibitory Factor in the Nucleus of the Solitary Tract Attenuates Renovascular Hypertension in Rats. American Journal of Hypertension, 2017, 30, 435-443.	2.0	16
36	Macrophage Migration Inhibitory Factor in the Paraventricular Nucleus Plays a Major Role in the Sympathoexcitatory Response to Salt. Hypertension, 2010, 56, 956-963.	2.7	15

#	Article	IF	CITATIONS
37	Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertension Research, 2019, 42, 439-449.	2.7	15
38	Importance of angiotensinergic mechanisms for the pressor response to l-glutamate into the rostral ventrolateral medulla. Brain Research, 2010, 1322, 72-80.	2.2	14
39	Lateral parabrachial nucleus and opioid mechanisms of the central nucleus of the amygdala in the control of sodium intake. Behavioural Brain Research, 2017, 316, 11-17.	2.2	14
40	Lesions of medullary catecholaminergic neurons increase salt intake in rats. Brain Research Bulletin, 2008, 76, 572-578.	3.0	13
41	Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience, 2010, 171, 524-530.	2.3	13
42	Importance of central AT1 receptors for sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience, 2011, 196, 147-152.	2.3	13
43	Angiotensinergic and cholinergic receptors of the subfornical organ mediate sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience, 2014, 262, 1-8.	2.3	13
44	Activation of α2-adrenoceptors in the lateral hypothalamus reduces pilocarpine-induced salivation in rats. Neuroscience Letters, 2009, 450, 225-228.	2.1	12
45	Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behavioural Brain Research, 2015, 288, 20-25.	2.2	12
46	Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides, 2018, 101, 82-88.	2.4	12
47	Cardiovascular responses to microinjection of l-glutamate into the NTS in AV3V-lesioned rats. Brain Research, 2004, 1025, 106-112.	2.2	11
48	Lesions of the commissural subnucleus of the nucleus of the solitary tract increase isoproterenol-induced water intake. Brazilian Journal of Medical and Biological Research, 2007, 40, 1121-1127.	1.5	11
49	Central cholinergic blockade reduces the pressor response to l-glutamate into the rostral ventrolateral medullary pressor area. Brain Research, 2007, 1155, 100-107.	2.2	11
50	Catecholaminergic neurons in the comissural region of the nucleus of the solitary tract modulate hyperosmolality-induced responses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1082-R1091.	1.8	11
51	The lateral parabrachial nucleus and central angiotensinergic mechanisms in the control of sodium intake induced by different stimuli. Behavioural Brain Research, 2017, 333, 17-26.	2.2	11
52	Damage of the medial preoptic area impairs peripheral pilocarpine-induced salivary secretion. Brain Research, 2006, 1085, 144-148.	2.2	10
53	AV3V lesions reduce the pressor response to l-glutamate into the RVLM. Brain Research, 2006, 1086, 160-167.	2.2	10
54	High-fat diet increases respiratory frequency and abdominal expiratory motor activity during hypercapnia. Respiratory Physiology and Neurobiology, 2018, 258, 32-39.	1.6	10

#	Article	IF	CITATIONS
55	Enhancement of meal-associated hypertonic NaCl intake by moxonidine into the lateral parabrachial nucleus. Behavioural Brain Research, 2007, 183, 156-160.	2.2	9
56	Sodium intake by hyperosmotic rats treated with a GABAA receptor agonist into the lateral parabrachial nucleus. Brain Research, 2008, 1190, 86-93.	2.2	9
57	Involvement of central cholinergic mechanisms on sodium intake induced by gabaergic activation of the lateral parabrachial nucleus. Neuroscience Letters, 2013, 534, 188-192.	2.1	9
58	Hydrogen peroxide attenuates the dipsogenic, renal and pressor responses induced by cholinergic activation of the medial septal area. Neuroscience, 2015, 284, 611-621.	2.3	9
59	Carotid bodies contribute to sympathoexcitation induced by acute salt overload. Experimental Physiology, 2019, 104, 15-27.	2.0	9
60	Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Brain Research, 2015, 1625, 238-245.	2.2	8
61	Cardiovascular and hidroelectrolytic changes in rats fed with high-fat diet. Behavioural Brain Research, 2019, 373, 112075.	2.2	8
62	Renovascular hypertension elevates pulmonary ventilation in rats by carotid body-dependent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R730-R742.	1.8	8
63	Gabaergic and opioid receptors mediate the facilitation of NaCl intake induced by α2-adrenergic activation in the lateral parabrachial nucleus. Behavioural Brain Research, 2015, 278, 535-541.	2.2	7
64	Intracranial Pressure During the Development of Renovascular Hypertension. Hypertension, 2021, 77, 1311-1322.	2.7	7
65	Involvement of sinoaortic afferents in renal sympathoinhibition and vasodilation induced by acute hypernatremia. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 1135-1141.	1.9	6
66	Role of the medial septal area on pilocarpine-induced salivary secretion and water intake. Brain Research, 2009, 1298, 145-152.	2.2	5
67	Hypothalamic disconnection caudal to paraventricular nucleus affects cardiovascular and drinking responses to central angiotensin II and carbachol. Brain Research, 2011, 1388, 100-108.	2.2	5
68	Effects of acetylcholine and cholinergic antagonists on the activity of nucleus of the solitary tract neurons. Brain Research, 2017, 1659, 136-141.	2.2	5
69	Centrally acting adrenomedullin in the longâ€ŧerm potentiation of sympathetic vasoconstrictor activity induced by intermittent hypoxia in rats. Experimental Physiology, 2019, 104, 1371-1383.	2.0	5
70	Endogenous hydrogen peroxide affects antidiuresis to cholinergic activation in the medial septal area. Neuroscience Letters, 2019, 694, 51-56.	2.1	5
71	Central mechanisms involved in pilocarpine-induced pressor response. Autonomic Neuroscience: Basic and Clinical, 2011, 164, 34-42.	2.8	4
72	Modulation of hypercapnic respiratory response by cholinergic transmission in the commissural nucleus of the solitary tract. Pflugers Archiv European Journal of Physiology, 2020, 472, 49-60.	2.8	4

#	Article	IF	CITATIONS
73	Lesion of Serotonergic Afferents to the Retrotrapezoid Nucleus Impairs the Tachypneic Response to Hypercapnia in Unanesthetized Animals. Neuroscience, 2021, 452, 63-77.	2.3	4
74	ANG II and Aldosterone Acting Centrally Participate in the Enhanced Sodium Intake in Water-Deprived Renovascular Hypertensive Rats. Frontiers in Pharmacology, 2021, 12, 679985.	3.5	4
75	Haemodynamic effects of hypothalamic disconnection in anaesthetized rats. Autonomic Neuroscience: Basic and Clinical, 2002, 98, 51-54.	2.8	3
76	Commissural NTS lesions enhance the pressor response to central cholinergic and adrenergic activation. Neuroscience Letters, 2012, 521, 31-36.	2.1	3
77	Lesion of the commissural nucleus of the solitary tract/A2 noradrenergic neurons facilitates the activation of angiotensinergic mechanisms in response to hemorrhage. Neuroscience, 2013, 254, 196-204.	2.3	3
78	Sodium intake combining cholinergic activation and noradrenaline into the lateral parabrachial nucleus. Neuroscience, 2015, 300, 229-237.	2.3	3
79	Catalase blockade reduces the pressor response to central cholinergic activation. Brain Research Bulletin, 2019, 153, 266-272.	3.0	3
80	Anti-hypertensive effect of hydrogen peroxide acting centrally. Hypertension Research, 2020, 43, 1192-1203.	2.7	3
81	Vasopressinâ€dependent pressor responses induced by hypertonic saline load in rats with commissural NTS lesions. FASEB Journal, 2007, 21, A514.	0.5	3
82	Cardiovascular responses to injections of angiotensin II or carbachol into the rostral ventrolateral medulla in rats with AV3V lesions. Neuroscience Letters, 2013, 556, 32-36.	2.1	2
83	NTS AT1a receptor on long-term arterial pressure regulation: putative mechanism. Cardiovascular Research, 2013, 100, 173-174.	3.8	2
84	Hydrogen peroxide centrally attenuates hyperosmolarity-induced thirst and natriuresis. Neuroscience Letters, 2016, 610, 129-134.	2.1	2
85	Opioid and α2 adrenergic mechanisms are activated by GABA agonists in the lateral parabrachial nucleus to induce sodium intake. Brain Research Bulletin, 2018, 139, 174-181.	3.0	2
86	Facilitation of sodium intake by combining noradrenaline into the lateral parabrachial nucleus with prazosin peripherally. Pharmacology Biochemistry and Behavior, 2013, 111, 111-119.	2.9	1
87	Central muscarinic and LPBN mechanisms on sodium intake. Brain Research Bulletin, 2019, 144, 14-20.	3.0	1
88	Electrocardiographic changes in the acute hyperkalaemia produced by intragastric KCl load in rats. Experimental Physiology, 2021, 106, 1263-1271.	2.0	1
89	A2 noradrenergic neurons inhibit osmoreceptorâ€induced pressor responses FASEB Journal, 2008, 22, .	0.5	1
90	Role of central angiotensinergic mechanisms on the facilitation of the recovery of hemorrhageâ€induced hypotension by noradrenergic A2â€iesions. FASEB Journal, 2010, 24, 794.8.	0.5	1

#	Article	IF	CITATIONS
91	Optogenetic stimulation of Dbx1 neurons enhances the respiratoryâ€sympathetic coupling in <i>in vivo</i> CIH mice. FASEB Journal, 2021, 35, .	0.5	0
92	Sodium intake and changes in câ€fos expression in forebrain and hindbrain areas induced by baclofen into the lateral parabrachial nucleus. FASEB Journal, 2007, 21, A509.	0.5	0
93	Interaction between serotoninergic and opioidergic mechanisms of the lateral parabrachial nucleus in the control of NaCl intake. FASEB Journal, 2007, 21, A510.	0.5	0
94	EFFECTS OF ELECTROLYTIC LESIONS OR CHOLINERGIC BLOCKADE OF THE MEDIAL SEPTAL AREA ON THE SALIVARY SECRETION AND WATER INTAKE INDUCED BY PERIPHERAL PILOCARPINE. FASEB Journal, 2007, 21, A510.	0.5	0
95	Pressor responses produced by peripheral osmoreceptor activation in commissural nucleus of the solitary tractâ€lesioned rats FASEB Journal, 2008, 22, 738.2.	0.5	0
96	Hyperosmotic evoked sympathoexcitation is blocked by overexpression of macrophage inhibitory migration factor (MIF) in the paraventricular nucleus of hypothalamus (PVN). FASEB Journal, 2009, 23, 792.11.	0.5	0
97	Chronic Superoxide Signaling in the Rostral Ventrolateral Medulla (RVLM) is Essential For Goldblatt Hypertension. FASEB Journal, 2010, 24, 809.3.	0.5	0
98	Control of sympathetic and phrenic nerve activity by cholinergic mechanisms in the nucleus of the solitary tract (NTS). FASEB Journal, 2012, 26, 702.11.	0.5	0
99	Angiotensin type 2 receptors (AT2R) over expression in the nucleus of the solitary tract (NTS) attenuate renovascular hypertension. FASEB Journal, 2012, 26, 1091.15.	0.5	0
100	Macrophage inhibitory factor (MIF) in the nucleus of tract solitary (NTS) improves baroreflex function in spontaneously hypertensive rats (SHR). FASEB Journal, 2012, 26, .	0.5	0
101	Central cholinergic or angiotensinergic activation facilitates the pressor responses to glutamate injected into the RVLM. FASEB Journal, 2012, 26, 1091.73.	0.5	0
102	Increased expression of AT2 receptors in the nucleus of the solitary tract improves baroreflex function in renovascular hypertensive rats FASEB Journal, 2013, 27, 927.10.	0.5	0
103	MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) DECREASES NEUROINFLAMMATION IN THE SOLITARY TRACT NUCLEUS (NTS) OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR) FASEB Journal, 2013, 27, 1118.2.	0.5	0
104	Arterial pressure and gene expression in the nucleus of the solitary tract in rats fed with highâ€ f at diet (874.4). FASEB Journal, 2014, 28, .	0.5	0
105	Losartan Injected into the Nucleus of the Solitary Tract Blunts Pressor Mechanisms Activated by Highâ€Fat Diet. FASEB Journal, 2015, 29, 984.9.	0.5	0
106	Sympathetic and respiratory activities during increases in osmolarity in an in situ rat preparation FASEB Journal, 2015, 29, 658.4.	0.5	0
107	ARTERIAL CHEMOREFLEX FUNCTION IN RENOVASCULAR HYPERTENSIVE RATS. FASEB Journal, 2015, 29, 653.3.	0.5	0
108	OFFSPRING OF OBESE DAMS PRESENT CHANGES IN RESPIRATORY AND SYMPATHETIC ACTIVITIES. FASEB	0.5	0

#	Article	IF	CITATIONS
109	Excitatory Inputs from Carotid Bodies Drive Respiratory Changes in Renovascular Hypertensive Rats. FASEB Journal, 2019, 33, 560.3.	0.5	0
110	ACUTE EFFECT OF ALDOSTERONE ON THE MEMBRANE POTENTIAL IN NEURONS OF THE NUCLEUS OF THE SOLITARY TRACT. FASEB Journal, 2019, 33, 851.3.	0.5	0
111	Water deprivation enhances the hypercapnic ventilatory response in rats. FASEB Journal, 2019, 33, 560.5.	0.5	0
112	Optogenetic stimulation of Dbx1 neurons promote increase in sympathetic activity in vivo. FASEB Journal, 2020, 34, 1-1.	0.5	0
113	Water Deprivation Enhances the Late Expiratory Activity of Abdominal Nerve During Hypercapnia and Hypoxia in Rats. FASEB Journal, 2020, 34, 1-1.	0.5	0
114	The Ventilatory Response to Hypercapnia <i>in vivo</i> Requires Serotoninergic Afferents to the Retrotrapezoid Nucleus. FASEB Journal, 2020, 34, 1-1.	0.5	0