Tassula Proikas-Cezanne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925472/publications.pdf

Version: 2024-02-01

54 papers 13,701 citations

201674 27 h-index 189892 50 g-index

55 all docs 55 docs citations

55 times ranked 25285 citing authors

#	Article	IF	CITATIONS
1	Autophagy profiling in single cells with open source CellProfiler-based image analysis. Autophagy, 2023, 19, 338-351.	9.1	8
2	The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy, 2022, 18, 50-72.	9.1	113
3	Transautophagy: Research and Translation of Autophagy Knowledge 2020. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-3.	4.0	2
4	Editorial: Autophagy and Ageing: Ideas, Methods, Molecules. Frontiers in Cell and Developmental Biology, 2020, 8, 141.	3.7	2
5	Drp1 modulates mitochondrial stress responses to mitotic arrest. Cell Death and Differentiation, 2020, 27, 2620-2634.	11.2	18
6	ATG-18 and EPG-6 are Both Required for Autophagy but Differentially Contribute to Lifespan Control in Caenorhabditis elegans. Cells, 2019, 8, 236.	4.1	4
7	A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five. Neurobiology of Disease, 2019, 127, 419-431.	4.4	26
8	Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy. Autophagy, 2019, 15, 347-351.	9.1	4
9	Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Methods in Molecular Biology, 2019, 1880, 429-445.	0.9	1
10	WIPI $\langle b \rangle \hat{l}^2 \langle b \rangle$ -propellers function as scaffolds for STK11/LKB1-AMPK and AMPK-related kinase signaling in autophagy. Autophagy, 2018, 14, 1-2.	9.1	16
11	SGK1 Inhibits Autophagy in Murine Muscle Tissue. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	19
12	Transautophagy: Research and Translation of Autophagy Knowledge. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-3.	4.0	1
13	WIPI3 and WIPI4 \hat{l}^2 -propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nature Communications, 2017, 8, 15637.	12.8	156
14	WIPI., 2017,, 4853-4855.		0
15	Primary cilia mechanosensing triggers autophagy-regulated cell volume control. Nature Cell Biology, 2016, 18, 591-592.	10.3	6
16	Activation of AMPK-induced autophagy ameliorates Huntington disease pathology inÂvitro. Neuropharmacology, 2016, 108, 24-38.	4.1	59
17	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
18	WIPI-Mediated Autophagy and Longevity. Cells, 2015, 4, 202-217.	4.1	38

#	Article	IF	CITATIONS
19	WIPI proteins: essential Ptdlns3 <i>P</i> effectors at the nascent autophagosome. Journal of Cell Science, 2015, 128, 207-17.	2.0	214
20	Fluorescence-based imaging of autophagy progression by human WIPI protein detection. Methods, 2015, 75, 69-78.	3.8	17
21	Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes?. FEBS Letters, 2015, 589, 1546-1551.	2.8	20
22	Human WIPIs as Phosphoinositide Effectors at the Nascent Autophagosome. , 2015, , 79-89.		1
23	Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. Journal of Lipid Research, 2014, 55, 1267-1278.	4.2	50
24	Neutral Lipid Stores and Lipase PNPLA5 Contribute to Autophagosome Biogenesis. Current Biology, 2014, 24, 609-620.	3.9	213
25	WIPI \hat{l}^2 -propellers at the crossroads of autophagosome and lipid droplet dynamics. Biochemical Society Transactions, 2014, 42, 1414-1417.	3.4	8
26	Atg18 function in autophagy is regulated by specific sites within its \hat{l}^2 -propeller. Journal of Cell Science, 2013, 126, 593-604.	2.0	79
27	Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Molecular Medicine, 2013, 5, 870-890.	6.9	96
28	WIPI \hat{l}^2 -propellers in autophagy-related diseases and longevity. Biochemical Society Transactions, 2013, 41, 962-967.	3.4	14
29	Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy, 2013, 9, 1475-1490.	9.1	83
30	WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic (i>Staphylococcus aureus (i>for Lysosomal Degradation. International Journal of Cell Biology, 2012, 2012, 1-13.	2.5	34
31	Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 \hat{l}^2 -propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. Journal of Molecular Signaling, 2012, 7, 16.	0.5	25
32	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
33	Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nature Cell Biology, 2012, 14, 829-837.	10.3	209
34	Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nature Reviews Molecular Cell Biology, 2012, 13, 7-12.	37.0	479
35	WIPI., 2012, , 1-3.		O
36	Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 2011, 7, 1448-1461.	9.1	103

#	Article	IF	CITATIONS
37	Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. Journal of Cellular and Molecular Medicine, 2011, 15, 2007-2010.	3.6	48
38	A New Fluorescence-Based Assay for Autophagy. Chemistry and Biology, 2011, 18, 940-941.	6.0	7
39	Beclin 1 or not Beclin 1 Autophagy, 2011, 7, 671-672.	9.1	19
40	Ca ²⁺ /Calmodulin-Dependent Kinase (CaMK) Signaling via CaMKI and AMP-Activated Protein Kinase Contributes to the Regulation of WIPI-1 at the Onset of Autophagy. Molecular Pharmacology, 2011, 80, 1066-1075.	2.3	75
41	AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cellular Signalling, 2010, 22, 914-925.	3.6	145
42	Reduced Basal Autophagy and Impaired Mitochondrial Dynamics Due to Loss of Parkinson's Disease-Associated Protein DJ-1. PLoS ONE, 2010, 5, e9367.	2.5	319
43	Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation. Journal of Biological Chemistry, 2010, 285, 24184-24194.	3.4	172
44	The Bcl-2 Homology Domain 3 Mimetic Gossypol Induces Both Beclin 1-dependent and Beclin 1-independent Cytoprotective Autophagy in Cancer Cells. Journal of Biological Chemistry, 2010, 285, 25570-25581.	3.4	112
45	Chapter 16 Assessing Mammalian Autophagy by WIPIâ€1/Atg18 Puncta Formation. Methods in Enzymology, 2009, 452, 247-260.	1.0	28
46	Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO Journal, 2009, 28, 2244-2258.	7.8	241
47	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
48	Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy. FEBS Letters, 2007, 581, 3396-3404.	2.8	146
49	Rab14 is part of the early endosomal clathrin-coated TGN microdomain. FEBS Letters, 2006, 580, 5241-5246.	2.8	50
50	WIPI- $1\hat{1}$ (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 2004, 23, 9314-9325.	5.9	322
51	Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos. BMC Biochemistry, 2002, 3, 6.	4.4	1
52	Aâ€~no-hybrids' screen for functional antagonizers of human p53 transactivator function: dominant negativity in fission yeast. Oncogene, 2001, 20, 6001-6008.	5.9	10
53	Interconnected Regulation of Apoptosis and WIPI-Mediated Autophagy. , 0, , .		O
54	Role of Human WIPIs in Macroautophagy. , 0, , .		0