Baris Demir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9254286/publications.pdf Version: 2024-02-01

RADIS DEMID

#	Article	IF	CITATIONS
1	Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nature Communications, 2022, 13, 221.	12.8	56
2	A Computational Procedure for Atomistic Modelling of Polyphosphazenes towards Better Capturing Molecular-Level Structuring and Thermo-Mechanical Properties. Polymers, 2022, 14, 1451.	4.5	2
3	New Framework for Computing a General Local Self-Diffusion Coefficient Using Statistical Mechanics. Journal of Chemical Theory and Computation, 2022, 18, 3357-3363.	5.3	5
4	Tailoring mechanical and electrical properties of graphene oxide film for structural dielectric capacitors. Journal of Power Sources, 2021, 482, 229020.	7.8	14
5	A Bespoke Computational Procedure to Incorporate CO ₂ as a Renewable Feedstock into Polycarbonates. ACS Applied Polymer Materials, 2021, 3, 2722-2731.	4.4	4
6	Molecular-Level Investigation of Cycloaliphatic Epoxidised Ionic Liquids as a New Generation of Monomers for Versatile Poly(Ionic Liquids). Polymers, 2021, 13, 1512.	4.5	10
7	An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation. Polymer, 2021, 228, 123938.	3.8	4
8	Modelling Amorphous Nanoporous Polymers Doped with an Ionic Liquid via an Adaptable Computational Procedure. Industrial & Engineering Chemistry Research, 2021, 60, 11893-11904.	3.7	1
9	Thermal conductivities and mechanical properties of epoxy resin as a function of the degree of cross-linking. International Journal of Heat and Mass Transfer, 2021, 180, 121821.	4.8	22
10	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from <i>Artocarpus heterophyllus</i> Seed. ACS Applied Energy Materials, 2021, 4, 12257-12266.	5.1	21
11	Dendronized polydiacetylenes via photo-polymerization of supramolecular assemblies showing thermally tunable chirality. Chemical Communications, 2021, 57, 12780-12783.	4.1	6
12	Thermoresponsive Supramolecular Assemblies from Dendronized Amphiphiles To Form Fluorescent Spheres with Tunable Chirality. ACS Nano, 2021, 15, 20067-20078.	14.6	16
13	Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Materials Horizons, 2020, 7, 3187-3195.	12.2	99
14	Graphene oxide thin film structural dielectric capacitors for aviation static electricity harvesting and storage. Composites Part B: Engineering, 2020, 201, 108375.	12.0	22
15	New Epoxy Thermosets Derived from a Bisimidazolium Ionic Liquid Monomer: An Experimental and Modeling Investigation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12208-12221.	6.7	25
16	Investigation of the Ionic Liquid Graphene Electric Double Layer in Supercapacitors Using Constant Potential Simulations. Nanomaterials, 2020, 10, 2181.	4.1	24
17	Structural Electrolytes Based on Epoxy Resins and Ionic Liquids: A Molecular-Level Investigation. Macromolecules, 2020, 53, 7635-7649.	4.8	19
18	In silico study of bio-based epoxy precursors for sustainable and renewable thermosets. Polymer, 2020, 191, 122253.	3.8	20

BARIS DEMIR

#	Article	IF	CITATIONS
19	Mass difference and polarization lead to low thermal conductivity of graphene-like carbon nitride (C3N). Carbon, 2020, 162, 202-208.	10.3	35
20	Lowâ€Fouling Fluoropolymers for Bioconjugation and Inâ€Vivo Tracking. Angewandte Chemie, 2020, 132, 4759-4765.	2.0	22
21	Lowâ€Fouling Fluoropolymers for Bioconjugation and Inâ€Vivo Tracking. Angewandte Chemie - International Edition, 2020, 59, 4729-4735.	13.8	40
22	Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces. Composites Science and Technology, 2020, 196, 108225.	7.8	39
23	Boosting the electrical and mechanical properties of structural dielectric capacitor composites via gold nanoparticle doping. Composites Part B: Engineering, 2019, 178, 107480.	12.0	31
24	A Versatile Computational Procedure for Chain-Growth Polymerization Using Molecular Dynamics Simulations. ACS Applied Polymer Materials, 2019, 1, 3027-3038.	4.4	13
25	Designing carbon fiber composite interfaces using a †̃graft-to' approach: Surface grafting density versus interphase penetration. Carbon, 2019, 146, 88-96.	10.3	56
26	Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: a simple pathway to install passive functionality into composites. Journal of Materials Chemistry A, 2019, 7, 13483-13494.	10.3	43
27	Epoxy-gold nanoparticle nanocomposites with enhanced thermo-mechanical properties: An integrated modelling and experimental study. Composites Science and Technology, 2019, 174, 106-116.	7.8	22
28	Predictions of Thermoâ€Mechanical Properties of Cross‣inked Polyacrylamide Hydrogels Using Molecular Simulations. Advanced Theory and Simulations, 2019, 2, 1800153.	2.8	52
29	A predictive model of interfacial interactions between functionalised carbon fibre surfaces cross-linked with epoxy resin. Composites Science and Technology, 2018, 159, 127-134.	7.8	43
30	Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers. Journal of Materials Chemistry A, 2018, 6, 4504-4514.	10.3	48
31	Atomistic Modeling of the Formation of a Thermoset/Thermoplastic Interphase during Co-Curing. Macromolecules, 2018, 51, 3983-3993.	4.8	35
32	An efficient high-throughput grafting procedure for enhancing carbon fiber-to-matrix interactions in composites. Chemical Engineering Journal, 2018, 353, 373-380.	12.7	50
33	Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites. ACS Applied Materials & Interfaces, 2017, 9, 11846-11857.	8.0	112
34	Electrochemical surface modification of carbon fibres by grafting of amine, carboxylic and lipophilic amide groups. Carbon, 2017, 118, 393-403.	10.3	97
35	Correction: Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 19975-19975.	2.8	1
36	Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 13153-13157.	2.8	34

BARIS DEMIR

#	Article	IF	CITATIONS
37	Adsorption of perfluorohexane in BAM-P109 type activated carbon via molecular simulation. Adsorption Science and Technology, 2016, 34, 79-92.	3.2	7
38	A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter, 2016, 12, 2453-2464.	2.7	93
39	Prediction of perfluorohexane adsorption in BCR-704 zeolite via molecular simulation. Fluid Phase Equilibria, 2014, 366, 152-158.	2.5	6
40	Propane/propylene separation in ion-exchanged zeolite-like metal organic frameworks. Microporous and Mesoporous Materials, 2014, 198, 185-193.	4.4	14
41	CO ₂ /CH ₄ Separation in Ion-Exchanged Zeolite-like Metal Organic Frameworks with Sodalite Topology (<i>sod</i> -ZMOFs). Journal of Physical Chemistry C, 2013, 117, 15647-15658.	3.1	19
42	Silver–Sodium Ion Exchange Dynamics in LTA Zeolite Membranes. Journal of Physical Chemistry C, 2013, 117, 1663-1671.	3.1	24
43	Atomistic Modeling of Dual-Cured Thermosets Based on Glycidyl Methacrylate and Hardeners with Various Architecture and Functionality. ACS Applied Polymer Materials, 0, , .	4.4	3