Paulo J Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253977/publications.pdf

Version: 2024-02-01

80 papers 1,725 citations

257450 24 h-index 330143 37 g-index

84 all docs

84 docs citations

84 times ranked 1741 citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes and Pigments, 2011, 91, 62-73.	3.7	127
2	Superparamagnetic \hat{I}^3 -Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Transactions, 2010, 39, 2842.	3.3	109
3	Photochromic properties of thienylpyrrole azo dyes in solution. Tetrahedron Letters, 2006, 47, 3711-3714.	1.4	59
4	New heterocyclic systems to afford microsecond green-light isomerisable azo dyes and their use as fast molecular photochromic switches. Chemical Communications, 2013, 49, 11427.	4.1	57
5	Screen-Printed Photochromic Textiles through New Inks Based on SiO ₂ @naphthopyran Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28935-28945.	8.0	53
6	[VO(acac)2] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol. Catalysis Science and Technology, $2011, 1, 784$.	4.1	51
7	Fast Color Change with Photochromic Fused Naphthopyrans. Journal of Organic Chemistry, 2015, 80, 12177-12181.	3.2	48
8	Photochromic Fused-Naphthopyrans without Residual Color. Journal of Organic Chemistry, 2012, 77, 3959-3968.	3.2	47
9	Photoswitching in azo dyes bearing thienylpyrrole and benzothiazole heterocyclic systems. Dyes and Pigments, 2012, 92, 745-748.	3.7	43
10	New benzopyranocarbazoles: synthesis and photochromic behaviour. Tetrahedron, 2005, 61, 1681-1691.	1.9	40
11	Fast thermal cis–trans isomerization of heterocyclic azo dyes in PMMA polymers. Optical Materials, 2013, 35, 1167-1172.	3.6	40
12	Synthesis and spectrokinetic studies of spiro[thioxanthene-naphthopyrans]. Tetrahedron, 2002, 58, 9505-9511.	1.9	39
13	Fast and fully reversible photochromic performance of hybrid sol–gel films doped with a fused-naphthopyran. Journal of Materials Chemistry C, 2013, 1, 5387.	5. 5	37
14	Synthesis and photochromic behaviour of novel 2H-chromenes derived from fluorenone. Tetrahedron, 2002, 58, 925-931.	1.9	35
15	Preventing the Formation of the Long-Lived ColoredTransoid-TransPhotoisomer in Photochromic Benzopyrans. Organic Letters, 2011, 13, 4040-4043.	4.6	35
16	Sulfonic acid functionalized silica nanoparticles as catalysts for the esterification of linoleic acid. New Journal of Chemistry, 2017, 41, 3595-3605.	2.8	35
17	Photochemical and thermal behaviour of new photochromic indeno-fused naphthopyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 300-307.	3.9	34
18	Naphthopyran-Based Silica Nanoparticles as New High-Performance Photoresponsive Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7221-7231.	8.0	34

#	Article	IF	Citations
19	Reversible trans–cis photoisomerization of new pyrrolidene heterocyclic imines. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259, 59-65.	3.9	31
20	Spectrokinetic studies on new bi-photochromic molecules containing two naphthopyran entities. Tetrahedron, 2005, 61, 11730-11743.	1.9	28
21	Light driven PVDF fibers based on photochromic nanosilica@naphthopyran fabricated by wet spinning. Applied Surface Science, 2019, 470, 951-958.	6.1	28
22	Novel photochromic 2,2′-bithiophene azo dyes. Dyes and Pigments, 2009, 82, 130-133.	3.7	27
23	Enhancement of the photochromic switching speed of bithiophene azo dyes. Tetrahedron Letters, 2012, 53, 4502-4506.	1.4	27
24	Synthesis of Photochromic Dyes Based on Annulated Coumarin Systems. Helvetica Chimica Acta, 2002, 85, 442-450.	1.6	26
25	The effect of a sulphur bridge on the photochromic properties of indeno-fused naphthopyrans. Tetrahedron, 2004, 60, 2593-2599.	1.9	26
26	Photochromic hybrid sol–gel films containing naphthopyrans. Journal of Sol-Gel Science and Technology, 2010, 56, 203-211.	2.4	25
27	Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chemical Engineering Journal, 2018, 350, 856-866.	12.7	24
28	Unprecedented coexistence of a spirooxazine and its four transoid photomerocyanines. Tetrahedron Letters, 2006, 47, 4903-4905.	1.4	23
29	Control of the Switching Speed of Photochromic Naphthopyrans through Restriction of Double Bond Isomerization. Journal of Organic Chemistry, 2017, 82, 12028-12037.	3.2	23
30	Photochromic Properties of New Benzoindene-Fused 2H-Chromenes. Helvetica Chimica Acta, 2003, 86, 570-578.	1.6	22
31	Enhancement of the color intensity of photochromic fused-naphthopyrans. Dyes and Pigments, 2019, 169, 118-124.	3.7	22
32	Joining High Coloration and Fast Color Fading with Photochromic Fusedâ€Naphthopyrans. European Journal of Organic Chemistry, 2020, 2020, 985-992.	2.4	22
33	A closer look at the photochromism of vinylidene-naphthofurans. Dyes and Pigments, 2017, 137, 593-600.	3.7	20
34	Remarkable thermally stable open forms of photochromic new N-substituted benzopyranocarbazoles. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 242-249.	3.9	19
35	One pot synthesis of aryl substituted aurones. Dyes and Pigments, 2012, 92, 537-541.	3.7	18
36	Synthesis of 1-Vinylidene-naphthofurans: A Thermally Reversible Photochromic System That Colors Only When Adsorbed on Silica Gel. Journal of Organic Chemistry, 2013, 78, 6956-6961.	3.2	18

#	Article	lF	Citations
37	Bichromophoric dye derived from benzo[1,3]oxazine system. Dyes and Pigments, 2013, 96, 569-573.	3.7	18
38	Fastest non-ionic azo dyes and transfer of their thermal isomerisation kinetics into liquid-crystalline materials. Chemical Communications, 2016, 52, 5132-5135.	4.1	18
39	Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145, 105936.	5.7	16
40	First report of a permanent open form of a naphthopyran. Tetrahedron Letters, 2002, 43, 2203-2205.	1.4	15
41	Synthesis of a Photochromic Fused 2 <i>H</i> â€Chromene Capable of Generating a Single Coloured Species. European Journal of Organic Chemistry, 2012, 2012, 1768-1773.	2.4	15
42	Lanthano phosphomolybdate-decorated silica nanoparticles: novel hybrid materials with photochromic properties. Dalton Transactions, 2015, 44, 4582-4593.	3.3	15
43	Acid-Catalyzed Domino Reactions of Tetraarylbut-2-yne-1,4-diols. Synthesis of Conjugated Indenes and Inden-2-ones. Journal of Organic Chemistry, 2014, 79, 5781-5786.	3.2	14
44	NMR investigation of the dyes formed under UV irradiation of some photochromic indeno-fused naphthopyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 180-185.	3.9	13
45	Photochromic and photophysical properties of new benzo- and naphtho[1,3]oxazine switches. Photochemical and Photobiological Sciences, 2011, 10, 1346-1354.	2.9	13
46	Synthesis and photochromic properties of symmetrical aryl ether linked bi- and tri-naphthopyrans. Dyes and Pigments, 2008, 76, 24-34.	3.7	12
47	Cationic 3H-indolium dyes by ring-opening of benzo[1,3]oxazine. Dyes and Pigments, 2013, 98, 93-99.	3.7	12
48	Exploring fast fading photochromic lactone-fused naphthopyrans. Dyes and Pigments, 2021, 187, 109110.	3.7	12
49	Synthesis and Reactivity of Photochromic 2H-Chromenes Based on 3-Carboxylated Coumarins. Helvetica Chimica Acta, 2003, 86, 3244-3253.	1.6	11
50	Highly diastereoselective intramolecular Diels–Alder reaction of chiral silatrienes. Tetrahedron, 2003, 59, 2451-2456.	1.9	11
51	Studies under Continuous Irradiation of Photochromic Spiro[fluorenopyran-thioxanthenes]. Helvetica Chimica Acta, 2004, 87, 1400-1410.	1.6	11
52	Fast photochromic sterically hindered benzo[1,3]oxazines. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 59-65.	3.9	11
53	A comprehensive spectroscopic, solvatochromic and photochemical analysis of 5-hydroxyquinoline and 8-hydroxyquinoline mono-azo dyes. Journal of Molecular Structure, 2021, 1223, 129323.	3.6	11
54	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. , 2020, , 611-714.		11

#	Article	IF	CITATIONS
55	Thermally reversible photochromic behaviour of new naphthopyrans involving an intramolecular [2+2] cyclization reaction. Tetrahedron, 2009, 65, 5369-5376.	1.9	10
56	Intramolecular Diels-Alder reaction of chiral silatrienes. Synthesis of 4-sila-3, 4, 4a, 5-tetrahydro-2H-isoquinolin-1-one. Tetrahedron Letters, 1998, 39, 4261-4262.	1.4	9
57	Diastereoselective Synthesis of 4-Sila-3,4,4a,5-tetrahydro-2H-isoquinolin-1-ones through Intramolecular Diels-Alder Reaction of Chiral Silatrienes. Synlett, 2001, 2001, 1455-1457.	1.8	9
58	Fast (hetero)aryl-benzothiazolium ethenes photoswitches activated by visible-light at room temperature. Dyes and Pigments, 2015, 117, 163-169.	3.7	8
59	Colour switching with photochromic vinylidene-naphthofurans. Tetrahedron, 2018, 74, 7372-7379.	1.9	8
60	Easy synthesis of polycyclic naphthopyran UV photoswitches using two one-pot reactions. Dyes and Pigments, 2021, 192, 109388.	3.7	8
61	Intramolecular Dielsâ^'Alder Reaction of Chiral Silatrienes: Synthesis of 4a,7,8,8a-Tetrahydro-4-silaisochroman-1-ones. European Journal of Organic Chemistry, 2000, 2000, 3039-3046.	2.4	7
62	Structural elucidation of the red dye obtained from reaction of 1,8-naphthalenediol with 1,1-diphenylprop-2-yn-1-ol. A correction. Tetrahedron Letters, 2003, 44, 1903-1905.	1.4	7
63	Grey colouring thermally reversible photochromic 1-vinylidene-naphthofurans. Dyes and Pigments, 2017, 141, 269-276.	3.7	7
64	A novel generation of hybrid photochromic vinylidene-naphthofuran silica nanoparticles through fine-tuning of surface chemistry. Dalton Transactions, 2017, 46, 9076-9087.	3.3	7
65	Photochromic hybrid materials doped with vinylidene-naphthofurans. Progress in Organic Coatings, 2018, 125, 146-152.	3.9	7
66	Synthesis of Hydroxy-7H-benzo[c]fluoren-7-ones. Synlett, 2004, 2004, 1015-1018.	1.8	6
67	Synthesis and photochemical reactivity of new 4-substituted naphtho[1,2-b]pyran derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 73-78.	3.9	5
68	Color switching transparent materials based on vinylidene-naphthofurans. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112155.	3.9	5
69	Novel Photochromic Spiro[Thioxanthene-Naphthopyrans] with Faster Bleaching Kinetics. Letters in Organic Chemistry, 2008, 5, 502-506.	0.5	4
70	Lactone-fused naphthopyran UV photoswitches with fast bleaching in the dark. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113649.	3.9	4
71	REGIOSELECTIVE SYNTHESIS OF SILACYCLOALKANES. Main Group Metal Chemistry, 2001, 24, .	1.6	3
72	The unexpected formation of novel carbonyl dyes. Dyes and Pigments, 2008, 78, 173-176.	3.7	3

#	Article	IF	CITATIONS
73	Unexpected formation of new photochromic compounds derived from 3,3-diphenyl-3H-naphtho[2,1-b]pyran-1-one. Tetrahedron, 2010, 66, 8317-8324.	1.9	3
74	Synthesis of Polycyclic Spironaphthofuran Derivatives by Acidâ€Catalyzed Domino Reaction of 2â€Naphthols with Tetraarylbutâ€2â€yneâ€1,4â€diols. European Journal of Organic Chemistry, 2018, 2018, 3291-3297.	2.4	3
75	Synthesis of Vinylnaphthofurans and NMR Analysis of their Photoswitching. European Journal of Organic Chemistry, 2021, 2021, 1979-1988.	2.4	3
76	Modulation of the fading kinetics of lactone-fused naphthopyran UV photoswitches. Dyes and Pigments, 2022, 202, 110301.	3.7	3
77	Estudo do comportamento fotocr \tilde{A}^3 mico de um naftopirano: uma experi \tilde{A}^a ncia simples ilustrativa do fotocromismo. Quimica Nova, 2006, 29, 607-610.	0.3	2
78	¹ H and ¹³ C NMR signal assignments of some new spiro[7 <i>H</i> à€benzo[<i>de</i>]anthraceneâ€naphthopyrans]. Magnetic Resonance in Chemistry, 2008, 46, 295-298.	1.9	2
79	Synthesis of carbonyl dyes from 1-hydroxy-2-acetonaphthone and 2-fluorobenzophenone. Journal of Heterocyclic Chemistry, 2010, 47, 1123-1126.	2.6	1
80	New Benzopyranocarbazoles: Synthesis and Photochromic Behavior ChemInform, 2005, 36, no.	0.0	0