Ashok Chhetry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925359/publications.pdf

Version: 2024-02-01

25 papers 1,494 citations

567281 15 h-index 940533 16 g-index

25 all docs 25 docs citations

25 times ranked

1413 citing authors

#	Article	IF	CITATIONS
1	Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22212-22224.	8.0	264
2	Ultrasensitive Interfacial Capacitive Pressure Sensor Based on a Randomly Distributed Microstructured Iontronic Film for Wearable Applications. ACS Applied Materials & Diterfaces, 2019, 11, 3438-3449.	8.0	159
3	Hydrogen-Bond-Triggered Hybrid Nanofibrous Membrane-Based Wearable Pressure Sensor with Ultrahigh Sensitivity over a Broad Pressure Range. ACS Nano, 2021, 15, 4380-4393.	14.6	155
4	Enhanced Sensitivity of Capacitive Pressure and Strain Sensor Based on CaCu ₃ Ti ₄ O ₁₂ Wrapped Hybrid Sponge for Wearable Applications. Advanced Functional Materials, 2020, 30, 1910020.	14.9	146
5	A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. Journal of Materials Chemistry C, 2017, 5, 10068-10076.	5.5	123
6	MoS ₂ -Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor. ACS Applied Materials & Diterfaces, 2019, 11, 22531-22542.	8.0	120
7	Black Phosphorus@Laserâ€Engraved Graphene Heterostructureâ€Based Temperature–Strain Hybridized Sensor for Electronicâ€Skin Applications. Advanced Functional Materials, 2021, 31, 2007661.	14.9	107
8	Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosensors and Bioelectronics, 2020, 169, 112637.	10.1	85
9	A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sensors Journal, 2017, , 1-1.	4.7	75
10	A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Research, 2019, 12, 1789-1795.	10.4	75
11	On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. Npj Flexible Electronics, 2022, 6, .	10.7	68
12	Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy, 2022, 95, 106970.	16.0	37
13	Hysteresis-Free Double-Network Hydrogel-Based Strain Sensor for Wearable Smart Bioelectronics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31363-31372.	8.0	29
14	A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Organic Electronics, 2018, 62, 581-590.	2.6	24
15	βâ€Phaseâ€Rich Laserâ€Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics. Advanced Functional Materials, 2022, 32, 2107969.	14.9	16
16	PAAm/PEDOT:PSS Hydrogel Based Hybrid Sensor for Simultaneous Detection of Pressure and Temperature. , 2020, , .		3
17	Highly Sensitive and Reliable Strain Sensor Based on MoS ₂ -Decorated Laser-Scribed Graphene for Wearable Electronics., 2019,,.		2
18	Highly Sensitive and Stable Pressure Sensor Based on Polymer-Mxene Composite Nanofiber Mat for Wearable Health Monitoring. , 2020, , .		2

ASHOK CHHETRY

#	Article	IF	CITATIONS
19	A Hybrid Ionic Nanofibrous Membrane Based Pressure Sensor With Ultra-High Sensitivity Over Broad Pressure Range for Wearable Healthcare Applications. , 2021, , .		2
20	Electronic Skin: Black Phosphorus@Laserâ€Engraved Graphene Heterostructureâ€Based Temperature–Strain Hybridized Sensor for Electronicâ€Skin Applications (Adv. Funct. Mater. 10/2021). Advanced Functional Materials, 2021, 31, 2170068.	14.9	1
21	Polyaniline-Nanospikes Modified Hybrid Nanofibrous Membrane Based Flexible Piezoresistive Sensor For Physiological Signal Monitoring. , 2022, , .		1
22	Surface Hydroxylated CaCu3Ti4O12 Wrapped Polyurethane Sponge for Highly Sensitive Pressure Sensing Application. , 2020, , .		0
23	An Mxene-Edot Nanocomposite Based Strain Sensor Patch for Wireless Human Motion Monitoring. , 2021, , .		O
24	MXenes and their composites for flexible electronics. , 2022, , 423-447.		0
25	βâ€Phaseâ€Rich Laserâ€Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics (Adv. Funct. Mater. 5/2022). Advanced Functional Materials, 2022, 32, .	14.9	0