
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of Lower Thermospheric Atomic Oxygen and Dynamics on the Thermospheric Semiannual Oscillation Using GITM and WACCMâ€X. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
2	Statistical Characterization of GITM Thermospheric Horizontal Winds in Comparison to GOCE Estimations. Space Weather, 2022, 20, .	3.7	0
3	Simulating the Solar Windâ€Magnetosphere Interaction During the Matuyamaâ€Brunhes Paleomagnetic Reversal. Geophysical Research Letters, 2022, 49, .	4.0	4
4	Global Driving of Auroral Precipitation: 1. Balance of Sources. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
5	FTA: A Feature Tracking Empirical Model of Auroral Precipitation. Space Weather, 2021, 19, e2020SW002629.	3.7	6
6	Changes in the Magnetic Field Topology and the Dayside/Nightside Reconnection Rates in Response to a Solar Wind Dynamic Pressure Front: A Case Study. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028768.	2.4	5
7	Estimation of the thermospheric density using ephemerides of the CYGNSS and Swarm constellations. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 221, 105687.	1.6	1
8	Fieldâ€Aligned Current During an Interval of B _{<i>Y</i>} â€Dominated Interplanetaryâ€Field; Modeledâ€toâ€Observed Comparisons. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	0
9	Thermosphereâ€lonosphere Modeling With Forecastable Inputs: Case Study of the June 2012 Highâ€5peed Stream Geomagnetic Storm. Space Weather, 2020, 18, e2019SW002352.	3.7	3
10	A Simple Method for Correcting Empirical Model Densities During Geomagnetic Storms Using Satellite Orbit Data. Space Weather, 2020, 18, e2020SW002565.	3.7	5
11	Impacts of Lower Thermospheric Atomic Oxygen on Thermospheric Dynamics and Composition Using the Global Ionosphere Thermosphere Model. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027877.	2.4	3
12	Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts. Space Weather, 2020, 18, e2020SW002551.	3.7	24
13	Estimation of Thermal-Conductivity Coefficients in the Global Ionosphere–Thermosphere Model. Journal of Aerospace Information Systems, 2020, 17, 546-553.	1.4	3
14	The Response of the Ionosphereâ€Thermosphere System to the 21 August 2017 Solar Eclipse. Journal of Geophysical Research: Space Physics, 2019, 124, 7341-7355.	2.4	26
15	HLâ€TWiM Empirical Model of Highâ€Latitude Upper Thermospheric Winds. Journal of Geophysical Research: Space Physics, 2019, 124, 10592-10618.	2.4	13
16	Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current. Geophysical Research Letters, 2019, 46, 7920-7928.	4.0	10
17	Relationship Between Temporal and Spatial Resolution for a Constellation of GNSS-R Satellites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 16-25.	4.9	29
18	Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations. Space Weather, 2019, 17, 269-284.	3.7	10

#	Article	IF	CITATIONS
19	Thermospheric Weather as Observed by Groundâ€Based FPIs and Modeled by GITM. Journal of Geophysical Research: Space Physics, 2019, 124, 1307-1316.	2.4	12
20	Multi-point observations and modeling of subauroral polarization streams (SAPS) and double-peak subauroral ion drifts (DSAIDs): A case study. Advances in Space Research, 2019, 63, 3522-3535.	2.6	16
21	Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles. Space Weather, 2019, 17, 285-298.	3.7	58
22	Response of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 2613-2627.	2.4	4
23	Assessment of the Differential Drag Maneuver Operations on the CYGNSS Constellation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 7-15.	4.9	6
24	Lowâ€Density Cell of the Thermosphere at High Latitudes Revisited. Journal of Geophysical Research: Space Physics, 2019, 124, 521-533.	2.4	5
25	Atmospheric Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse. Geophysical Research Letters, 2018, 45, 5246-5252.	4.0	22
26	The Spacecraft Orbital Characterization Kit and its Applications to the CYGNSS Mission , 2018, , .		10
27	A Yearâ€Long Comparison of GPS TEC and Global Ionosphereâ€Thermosphere Models. Journal of Geophysical Research: Space Physics, 2018, 123, 1410-1428.	2.4	18
28	Seasonal Dependence of Geomagnetic Activeâ€Time Northern High‣atitude Upper Thermospheric Winds. Journal of Geophysical Research: Space Physics, 2018, 123, 739-754.	2.4	27
29	Effects of Uncertainties in the Atmospheric Density on the Probability of Collision Between Space Objects. Space Weather, 2018, 16, 519-537.	3.7	37
30	Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017. Space Weather, 2018, 16, 321-331.	3.7	95
31	Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 2018, 123, 2974-2989.	2.4	10
32	GITMâ€Ðata Comparisons of the Depletion and Enhancement During the 2017 Solar Eclipse. Geophysical Research Letters, 2018, 45, 3319-3327.	4.0	28
33	Assessing the Quality of Models of the Ambient Solar Wind. Space Weather, 2018, 16, 1644-1667.	3.7	44
34	Enabling Sampling Properties of the Cygnss Satellite Constellation. , 2018, , .		0
35	An Ionosphere Specification Technique Based on Data Ingestion Algorithm and Empirical Orthogonal Function Analysis Method. Space Weather, 2018, 16, 1410-1423.	3.7	15
36	Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event. Space Weather, 2018, 16, 1686-1701.	3.7	22

#	Article	IF	CITATIONS
37	New results on the mid-latitude midnight temperature maximum. Annales Geophysicae, 2018, 36, 541-553.	1.6	8
38	Estimation of the Eddy Diffusion Coefficient Using Total Electron Content Data. , 2018, , .		2
39	A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Scientific Reports, 2018, 8, 8782.	3.3	195
40	Seasonal dependence of northern highâ€latitude upper thermospheric winds: A quiet time climatological study based on groundâ€based and spaceâ€based measurements. Journal of Geophysical Research: Space Physics, 2017, 122, 2619-2644.	2.4	30
41	PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2017, 122, 2589-2604.	2.4	19
42	Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics. Journal of Geophysical Research: Space Physics, 2017, 122, 5321-5338.	2.4	30
43	The effect of ring current electron scattering rates on magnetosphereâ€ionosphere coupling. Journal of Geophysical Research: Space Physics, 2017, 122, 4168-4189.	2.4	14
44	CEDARâ€GEM Challenge for Systematic Assessment of Ionosphere/Thermosphere Models in Predicting TEC During the 2006 December Storm Event. Space Weather, 2017, 15, 1238-1256.	3.7	17
45	Effect of the solar activity variation on the Global Ionosphere Thermosphere Model (GITM). Annales Geophysicae, 2016, 34, 725-736.	1.6	5
46	Global response of the upper thermospheric winds to large ion drifts in the Jovian ovals. Journal of Geophysical Research: Space Physics, 2016, 121, 4647-4667.	2.4	6
47	Twentyâ€four hour predictions of the solar wind speed peaks by the probability distribution function model. Space Weather, 2016, 14, 861-873.	3.7	6
48	Geomagnetic disturbance intensity dependence on the universal timing of the storm peak. Journal of Geophysical Research: Space Physics, 2016, 121, 7561-7571.	2.4	1
49	Universal time effect in the response of the thermosphere to electric field changes. Journal of Geophysical Research: Space Physics, 2016, 121, 3681-3698.	2.4	9
50	Rating global magnetosphere model simulations through statistical dataâ€nodel comparisons. Space Weather, 2016, 14, 819-834.	3.7	17
51	A new ionospheric electron precipitation module coupled with RAMâ€SCB within the geospace general circulation model. Journal of Geophysical Research: Space Physics, 2016, 121, 8554-8575.	2.4	40
52	Investigating the performance of simplified neutralâ€ion collisional heating rate in a global IT model. Journal of Geophysical Research: Space Physics, 2016, 121, 578-588.	2.4	8
53	New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bulletin of the American Meteorological Society, 2016, 97, 385-395.	3.3	285
54	Simulating electron and ion temperature in a global ionosphere thermosphere model: Validation and modeling an idealized substorm. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 138-139, 243-260.	1.6	14

#	Article	IF	CITATIONS
55	Hemispheric differences in the response of the upper atmosphere to the August 2011 geomagnetic storm: A simulation study. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 141, 13-26.	1.6	12
56	Theoretical study of zonal differences of electron density at midlatitudes with GITM simulation. Journal of Geophysical Research: Space Physics, 2015, 120, 2951-2966.	2.4	25
57	A simulation study of the thermosphere mass density response to substorms using GITM. Journal of Geophysical Research: Space Physics, 2015, 120, 7987-8001.	2.4	4
58	Retrospective-Cost-Based Adaptive Input and State Estimation for the Ionosphere–Thermosphere. Journal of Aerospace Information Systems, 2015, 12, 767-783.	1.4	12
59	Community-wide model validation study for systematic assessment of ionosphere models. , 2015, , .		0
60	Improving the ionospheric specification in the Global Ionosphere Thermosphere Model. , 2015, , .		0
61	Highâ€latitude ionospheric drivers and their effects on wind patterns in the thermosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 715-735.	2.4	20
62	Maximizing photovoltaic power generation of a space-dart configured satellite. Acta Astronautica, 2015, 111, 283-299.	3.2	27
63	Thermospheric winds around the cusp region. Journal of Geophysical Research: Space Physics, 2015, 120, 1248-1255.	2.4	16
64	Relative Ionospheric Ranging Delay in LEO GNSS Oceanic Reflections. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1416-1420.	3.1	12
65	Specification of the Ionosphere-Thermosphere Using the Ensemble Kalman Filter. Lecture Notes in Computer Science, 2015, , 274-283.	1.3	12
66	Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere. Annales Geophysicae, 2014, 32, 443-447.	1.6	18
67	CYGNSS-based Ionospheric Electron Content Estimation: An Analysis. , 2014, , .		1
68	An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3, 211-227.	1.6	26
69	Modeling subsolar thermospheric waves during a solar flare and penetration electric fields. Journal of Geophysical Research: Space Physics, 2014, 119, 10,507.	2.4	4
70	CYGNSS: NASA Earth Venture Tropical Cyclone Mission. , 2014, , .		2
71	Storm time response of the midlatitude thermosphere: Observations from a network of Fabryâ€Perot interferometers. Journal of Geophysical Research: Space Physics, 2014, 119, 6758-6773.	2.4	23
72	MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE PLANETS ORBITING M-DWARF STARS. Astrophysical Journal, 2014, 790, 57.	4.5	124

#	Article	IF	CITATIONS
73	Strong ionospheric fieldâ€aligned currents for radial interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 2014, 119, 3979-3995.	2.4	12
74	Predictions of the solar wind speed by the probability distribution function model. Space Weather, 2014, 12, 337-353.	3.7	22
75	The effect of background conditions on the ionospheric response to solar flares. Journal of Geophysical Research: Space Physics, 2014, 119, 5060-5075.	2.4	5
76	Developing a self onsistent description of Titan's upper atmosphere without hydrodynamic escape. Journal of Geophysical Research: Space Physics, 2014, 119, 4957-4972.	2.4	38
77	On the generation/decay of the stormâ€enhanced density plumes: Role of the convection flow and fieldâ€aligned ion flow. Journal of Geophysical Research: Space Physics, 2014, 119, 8543-8559.	2.4	74
78	Daytime altitude variations of the equatorial, topside magnetic fieldâ€aligned ion transport at solar minimum. Journal of Geophysical Research: Space Physics, 2013, 118, 3568-3575.	2.4	6
79	Exploring the influence of ionospheric O ⁺ outflow on magnetospheric dynamics: The effect of outflow intensity. Journal of Geophysical Research: Space Physics, 2013, 118, 5522-5531.	2.4	14
80	Data assimilation and driver estimation for the Global Ionosphere–Thermosphere Model using the Ensemble Adjustment Kalman Filter. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 126-136.	1.6	44
81	The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission. , 2013, , .		30
82	The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology. , 2013, , .		13
83	Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis. Journal of Geophysical Research: Space Physics, 2013, 118, 181-191.	2.4	29
84	Retrospective Cost Optimization for Adaptive State Estimation, Input Estimation, and Model Refinement. Procedia Computer Science, 2013, 18, 1919-1928.	2.0	5
85	Theoretical study: Influence of different energy sources on the cusp neutral density enhancement. Journal of Geophysical Research: Space Physics, 2013, 118, 2340-2349.	2.4	61
86	Electrodynamics of the highâ€latitude trough: Its relationship with convection flows and fieldâ€aligned currents. Journal of Geophysical Research: Space Physics, 2013, 118, 2565-2572.	2.4	21
87	Exploring the influence of ionospheric <i>O</i> ⁺ outflow on magnetospheric dynamics: dependence on the source location. Journal of Geophysical Research: Space Physics, 2013, 118, 1711-1722.	2.4	48
88	Multiâ€instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 2013, 118, 7798-7809.	2.4	53
89	Communityâ€wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 2013, 11, 369-385.	3.7	136
90	On the performance of global magnetohydrodynamic models in the Earth's magnetosphere. Space Weather, 2013, 11, 313-326.	3.7	28

#	Article	IF	CITATIONS
91	Large-Scale Measurements of Thermospheric Dynamics with a Multisite Fabry-Perot Interferometer Network: Overview of Plans and Results from Midlatitude Measurements. International Journal of Geophysics, 2012, 2012, 1-10.	1.1	39
92	Retrospective-Cost-Based Adaptive State Estimation and Input Reconstruction for the Global Ionosphere-Thermosphere Model. , 2012, , .		3
93	Retrospective-Cost Subsystem Identification for the Global Ionosphere-Thermosphere Model. , 2012, , .		Ο
94	Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation. Journal of Geophysical Research, 2012, 117, .	3.3	103
95	Dynamical effects of internal gravity waves in the equinoctial thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 90-91, 104-116.	1.6	49
96	The CYGNSS nanosatellite constellation hurricane mission. , 2012, , .		126
97	Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms. Journal of Geophysical Research, 2012, 117, .	3.3	28
98	Solar wind density controlling penetration electric field at the equatorial ionosphere during a saturation of cross polar cap potential. Journal of Geophysical Research, 2012, 117, .	3.3	17
99	CubeSats to NanoSats; Bridging the gap between educational tools and science workhorses. , 2012, , .		9
100	A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data. Journal of Geophysical Research, 2012, 117, .	3.3	43
101	CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 2012, 10, .	3.7	65
102	Utilizing the polar cap index to explore strong driving of polar cap dynamics. Journal of Geophysical Research, 2012, 117, .	3.3	7
103	Importance of capturing heliospheric variability for studies of thermospheric vertical winds. Journal of Geophysical Research, 2012, 117, .	3.3	16
104	Comparison of Joule heating associated with high-speed solar wind between different models and observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 75-76, 5-14.	1.6	14
105	Quiet-time low latitude ionospheric electrodynamics in the non-hydrostatic Global Ionosphere–Thermosphere Model. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 80, 161-172.	1.6	22
106	Joule heating associated with auroral electrojets during magnetospheric substorms. Journal of Geophysical Research, 2011, 116, .	3.3	7
107	Understanding the response of the ionosphere-magnetosphere system to sudden solar wind density increases. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	27
108	Testing the necessity of transient spikes in the storm time ring current drivers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	5

#	Article	IF	CITATIONS
109	Impact of the altitudinal Joule heating distribution on the thermosphere. Journal of Geophysical Research, 2011, 116, .	3.3	63
110	Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. Journal of Geophysical Research, 2011, 116, .	3.3	24
111	Reducing numerical diffusion in magnetospheric simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	10
112	Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape. Journal of Geophysical Research, 2011, 116, .	3.3	24
113	Geospace Environment Modeling 2008–2009 Challenge: Ground magnetic field perturbations. Space Weather, 2011, 9, .	3.7	71
114	Geospace Environment Modeling 2008–2009 Challenge: Geosynchronous magnetic field. Space Weather, 2011, 9, .	3.7	30
115	Role of variability in determining the vertical wind speeds and structure. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
116	Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
117	Quiet time observations of the openâ€closed boundary prior to the CIRâ€induced storm of 9 August 2008. Space Weather, 2011, 9, .	3.7	13
118	CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using groundâ€based observations. Space Weather, 2011, 9, .	3.7	71
119	Adaptive State Estimation for Nonminimum-Phase Systems with Uncertain Harmonic Inputs. , 2011, , .		6
120	The effects of different solar flare characteristics on the global thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1840-1848.	1.6	17
121	Retrospectiveâ€costâ€based adaptive model refinement for the ionosphere and thermosphere. Statistical Analysis and Data Mining, 2011, 4, 446-458.	2.8	24
122	Effects of high-latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere–ionosphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 592-600.	1.6	17
123	Retrospective-cost-based model refinement for system emulation and subsystem identification. , 2011, , .		13
124	Comparison of the observed dependence of large-scale Birkeland currents on solar wind parameters with that obtained from global simulations. Annales Geophysicae, 2011, 29, 1809-1826.	1.6	21
125	Modeling ionospheric <l>fo</l> F2 by using empirical orthogonal function analysis. Annales Geophysicae, 2011, 29, 1501-1515.	1.6	43
126	Comparative study of a substorm event by satellite observation and model simulation. Science Bulletin, 2010, 55, 857-864.	1.7	3

#	Article	IF	CITATIONS
127	Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 2010, 28, 1589-1614.	1.6	42
128	The effect of smoothed solar wind inputs on global modeling results. Journal of Geophysical Research, 2010, 115, .	3.3	20
129	Systematic evaluation of ground and geostationary magnetic field predictions generated by global magnetohydrodynamic models. Journal of Geophysical Research, 2010, 115, .	3.3	30
130	Exploring sources of magnetospheric plasma using multispecies MHD. Journal of Geophysical Research, 2010, 115, .	3.3	41
131	Including gap region fieldâ€aligned currents and magnetospheric currents in the MHD calculation of groundâ€based magnetic field perturbations. Journal of Geophysical Research, 2010, 115, .	3.3	42
132	Dipole tilt effects on the magnetosphereâ€ionosphere convection system during interplanetary magnetic field <i>B</i> _{<i>Y</i>} â€dominated periods: MHD modeling. Journal of Geophysical Research, 2010, 115, .	3.3	6
133	Comparison of the openâ€closed separatrix in a global magnetospheric simulation with observations: The role of the ring current. Journal of Geophysical Research, 2010, 115, .	3.3	19
134	Validation of SWMF magnetic field and plasma. Space Weather, 2010, 8, n/a-n/a.	3.7	59
135	Longâ€lasting goodshielding at the equatorial ionosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12
136	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global Ionosphereâ€Thermosphere Model and benchmark simulations. Journal of Geophysical Research, 2010, 115, .	3.3	34
137	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 2. Alternative scenarios for methane escape. Journal of Geophysical Research, 2010, 115, .	3.3	27
138	Plasma convection jets near the poleward boundary of the nightside auroral oval and their relation to Pedersen conductivity gradients. Annales Geophysicae, 2010, 28, 969-976.	1.6	12
139	Autonomous low-power magnetic data collection platform to enable remote high latitude array deployment. Review of Scientific Instruments, 2009, 80, 044501.	1.3	11
140	A nonlinear observer for semidetectable chemical reactions with application to kinetic-rate-constant estimation. , 2009, , .		1
141	Quantifying the effect of thermospheric parameterization in a global model. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 2017-2026.	1.6	15
142	Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere. Radio Science, 2009, 44, .	1.6	15
143	Cavities of weak magnetic field strength in the wake of FTEs: Results from global magnetospheric MHD simulations. Geophysical Research Letters, 2009, 36, .	4.0	11
144	Response of the magnetosphereâ€ionosphere system to a sudden southward turning of interplanetary magnetic field. Journal of Geophysical Research, 2009, 114, .	3.3	34

#	Article	IF	CITATIONS
145	PENGUIn multiâ€instrument observations of dayside highâ€latitude injections during the 23 March 2007 substorm. Journal of Geophysical Research, 2009, 114, .	3.3	8
146	Self onsistent model of magnetospheric electric field, ring current, plasmasphere, and electromagnetic ion cyclotron waves: Initial results. Journal of Geophysical Research, 2009, 114, .	3.3	23
147	A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections. Journal of Geophysical Research, 2009, 114, .	3.3	39
148	Comparative Study of Subauroral Polarization Streams with DMSP Observation and RAM Simulation. Chinese Journal of Geophysics, 2009, 52, 531-540.	0.2	3
149	The response of the magnetosphere-ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions. Annales Geophysicae, 2009, 27, 4391-4407.	1.6	25
150	Plasma Flow and Related Phenomena inÂPlanetaryÂAeronomy. Space Science Reviews, 2008, 139, 311-353.	8.1	30
151	Neutral Upper Atmosphere and Ionosphere Modeling. Space Science Reviews, 2008, 139, 107-141.	8.1	85
152	Modeling the thermospheric response to solar flares. Journal of Geophysical Research, 2008, 113, .	3.3	54
153	Assessment of the nonâ€hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophysical Research Letters, 2008, 35, .	4.0	81
154	Global model comparison with Millstone Hill during September 2005. Journal of Geophysical Research, 2008, 113, .	3.3	13
155	Validation of the space weather modeling framework using groundâ€based magnetometers. Space Weather, 2008, 6, .	3.7	59
156	Validation of the Space Weather Modeling Framework using observations from CHAMP and DMSP. Space Weather, 2008, 6, .	3.7	29
157	Cholesky-based reduced-rank square-root Kalman filtering. , 2008, , .		8
158	Saturation of the polar cap potential: Inference from Alfvén wing arguments. Journal of Geophysical Research, 2008, 113, .	3.3	89
159	Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation. Journal of Geophysical Research, 2008, 113, .	3.3	17
160	Statistical study of the subauroral polarization stream: Its dependence on the cross–polar cap potential and subauroral conductance. Journal of Geophysical Research, 2008, 113, .	3.3	50
161	Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure. Geophysical Research Letters, 2008, 35, .	4.0	20
162	Substorm onset dynamics in the magnetotail as derived from joint TC-1 and Cluster data analysis. Earth, Planets and Space, 2008, 60, 613-621.	2.5	2

#	Article	IF	CITATIONS
163	Data assimilation for magnetohydrodynamics with a zero-divergence constraint on the magnetic field. , 2008, , .		2
164	Reduced-rank unscented Kalman filtering using Cholesky-based decomposition. International Journal of Control, 2008, 81, 1779-1792.	1.9	5
165	Recursive estimation of terrestrial magnetic and electric potentials. , 2008, , .		0
166	Reduced-rank unscented Kalman filtering using Cholesky-based decomposition. , 2008, , .		1
167	Magnetic-field estimation using measurements from a floating buoy. , 2008, , .		0
168	Localized data assimilation in the ionosphere-thermosphere using a sampled-data unscented Kalman filter. , 2008, , .		3
169	SWMF simulation of field-aligned currents for a varying northward and duskward IMF with nonzero dipole tilt. Annales Geophysicae, 2008, 26, 1461-1477.	1.6	12
170	Balanced reconnection intervals: four case studies. Annales Geophysicae, 2008, 26, 3897-3912.	1.6	30
171	Neutral Upper Atmosphere and Ionosphere Modeling. Space Sciences Series of ISSI, 2008, , 107-141.	0.0	1
172	Plasma Flow and Related Phenomena inÂPlanetaryÂAeronomy. Space Sciences Series of ISSI, 2008, , 311-353.	0.0	0
173	NARMAX identification for space weather prediction using polynomial radial basis functions. , 2007, , .		2
174	Reduced-Order Covariance-Based Unscented Kalman Filtering with Complementary Steady-State Correlation. Proceedings of the American Control Conference, 2007, , .	0.0	2
175	A Comparison of the Extended and Unscented Kalman Filters for Discrete-Time Systems with Nondifferentiable Dynamics. Proceedings of the American Control Conference, 2007, , .	0.0	8
176	State Estimation for Large-Scale Systems Based on Reduced-Order Error-Covariance Propagation. Proceedings of the American Control Conference, 2007, , .	0.0	10
177	Effects of seasonal changes in the ionospheric conductances on magnetospheric field-aligned currents. Geophysical Research Letters, 2007, 34, .	4.0	48
178	Polar wind outflow model: Saturn results. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	45
179	Understanding storm-time ring current development through data-model comparisons of a moderate storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	51
180	Possible reasons for underestimating Joule heating in global models: <i>E</i> field variability, spatial resolution, and vertical velocity. Journal of Geophysical Research, 2007, 112, .	3.3	70

#	Article	IF	CITATIONS
181	Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: Observations and simulation. Journal of Geophysical Research, 2007, 112, .	3.3	47
182	Technique: Large-scale ionospheric conductance estimated from combined satellite and ground-based electromagnetic data. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	21
183	Clobal 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere. Journal of Geophysical Research, 2007, 112, .	3.3	13
184	Origin of the interhemispheric potential mismatch of merging cells for interplanetary magnetic field <i>B</i> _{<i>Y</i>} â€dominated periods. Journal of Geophysical Research, 2007, 112, .	3.3	22
185	Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Weather, 2007, 5, n/a-n/a.	3.7	97
186	Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?. Geophysical Research Letters, 2007, 34, .	4.0	61
187	Multiscale modeling of magnetospheric reconnection. Journal of Geophysical Research, 2007, 112, .	3.3	72
188	Space Weather Forecasting. IEEE Control Systems, 2007, 27, 109-123.	0.8	11
189	Alfvén wings at Earth's magnetosphere under strong interplanetary magnetic fields. Annales Geophysicae, 2007, 25, 533-542.	1.6	57
190	Modeling the ring current response to a sawtooth oscillation event. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 67-76.	1.6	9
191	Global auroral imaging in the ILWS era. Advances in Space Research, 2007, 40, 409-418.	2.6	5
192	Halloween Storm Simulations with the Space Weather Modeling Framework. , 2006, , .		2
193	A statistical comparison of the AMIE derived and DMSP-SSIES observed high-latitude ionospheric electric field. Journal of Geophysical Research, 2006, 111, .	3.3	26
194	Dependence of neutral winds on convection E-field, solar EUV, and auroral particle precipitation at high latitudes. Journal of Geophysical Research, 2006, 111, .	3.3	49
195	Role of vertical ion convection in the high-latitude ionospheric plasma distribution. Journal of Geophysical Research, 2006, 111, .	3.3	27
196	Analyzing electric field morphology through data-model comparisons of the Geospace Environment Modeling Inner Magnetosphere/Storm Assessment Challenge events. Journal of Geophysical Research, 2006, 111, .	3.3	37
197	Statistical analysis of ionospheric potential patterns for isolated substorms and sawtooth events. Annales Geophysicae, 2006, 24, 1977-1991.	1.6	31
198	A parametric study of magnetosphere–ionosphere coupling in the paleomagnetosphere. Advances in Space Research, 2006, 38, 1707-1712.	2.6	12

#	Article	IF	CITATIONS
199	The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection. Advances in Space Research, 2006, 38, 263-272.	2.6	62
200	The global ionosphere–thermosphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 839-864.	1.6	392
201	Modeling the Sun-to-Earth propagation of a very fast CME. Advances in Space Research, 2006, 38, 253-262.	2.6	38
202	The outer radiation belt injection, transport, acceleration and loss satellite (ORBITALS): A canadian small satellite mission for ILWS. Advances in Space Research, 2006, 38, 1838-1860.	2.6	16
203	Comparison of satellite ion drift velocities with AMIE deduced convection patterns. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1463-1479.	1.6	16
204	Non-potential electric field model of magnetosphere-ionosphere coupling. Geophysical Monograph Series, 2005, , 141-152.	0.1	1
205	A new formulation for the ionospheric cross polar cap potential including saturation effects. Annales Geophysicae, 2005, 23, 3533-3547.	1.6	52
206	A statistical analysis of the assimilative mapping of ionospheric electrodynamics auroral specification. Journal of Geophysical Research, 2005, 110, .	3.3	18
207	Reconciling prediction algorithms forDst. Journal of Geophysical Research, 2005, 110, .	3.3	17
208	Internal reconnection for northward interplanetary magnetic field. Journal of Geophysical Research, 2005, 110, .	3.3	36
209	High-latitude Joule heating response to IMF inputs. Journal of Geophysical Research, 2005, 110, .	3.3	54
210	Global MHD simulations of Saturn's magnetosphere at the time of Cassini approach. Geophysical Research Letters, 2005, 32, .	4.0	57
211	Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 2005, 110, .	3.3	65
212	Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 2005, 110, .	3.3	631
213	A PHYSICS-BASED SOFTWARE FRAMEWORK FOR SUN-EARTH CONNECTION MODELING. , 2005, , 383-397.		10
214	Magnetospheric convection electric field dynamics andstormtime particle energization: case study of the magneticstorm of 4 May 1998. Annales Geophysicae, 2004, 22, 497-510.	1.6	34
215	Ionospheric control of the magnetosphere: conductance. Annales Geophysicae, 2004, 22, 567-584.	1.6	342
216	Solution-adaptive magnetohydrodynamics for space plasmas: sun-to-earth simulations. Computing in Science and Engineering, 2004, 6, 14-35.	1.2	62

#	Article	IF	CITATIONS
217	Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	87
218	Comparison of photometer and global MHD determination of the open-closed field line boundary. Journal of Geophysical Research, 2004, 109, .	3.3	35
219	Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. Journal of Geophysical Research, 2004, 109, .	3.3	238
220	Open-closed field line boundary position: A parametric study using an MHD model. Journal of Geophysical Research, 2004, 109, .	3.3	43
221	Stormtime particle energization with high temporal resolution AMIE potentials. Journal of Geophysical Research, 2004, 109, .	3.3	23
222	MHD simulations of quadrupolar paleomagnetospheres. Journal of Geophysical Research, 2004, 109, .	3.3	26
223	Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm. Journal of Geophysical Research, 2004, 109, .	3.3	77
224	Transpolar potential saturation models compared. Journal of Geophysical Research, 2004, 109, .	3.3	98
225	Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 2004, 109, .	3.3	203
226	Real-Time Specifications of the Geospace Environment. Space Science Reviews, 2003, 107, 307-316.	8.1	8
227	The geospace environment data analysis system. Advances in Space Research, 2003, 31, 807-812.	2.6	1
228	The dependence of winter aurora on interplanetary parameters. Journal of Geophysical Research, 2003, 108, .	3.3	12
229	Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. Journal of Geophysical Research, 2003, 108, .	3.3	57
230	Dynamic response of Earth's magnetosphere toByreversals. Journal of Geophysical Research, 2003, 108,	3.3	21
231	Adaptive Mesh Refinement for Global Magnetohydrodynamic Simulation. Lecture Notes in Physics, 2003, , 247-274.	0.7	30
232	Parallel, Adaptive-Mesh-Refinement MHD for Global Space-Weather Simulations. AIP Conference Proceedings, 2003, , .	0.4	4
233	Real-Time Specifications of the Geospace Environment. , 2003, , 307-316.		1
234	Development of an integrated predictive MHD space weather model from the solar surface to the Earth's upper atmosphere. COSPAR Colloquia Series, 2002, 12, 149-161.	0.2	0

#	Article	IF	CITATIONS
235	Comment on "Nonlinear response of the polar ionosphere to large values of the interplanetary electric field―by C. T. Russell et al Journal of Geophysical Research, 2002, 107, SIA 13-1-SIA 13-4.	3.3	17
236	Consequences of a saturated convection electric field on the ring current. Geophysical Research Letters, 2002, 29, 62-1-62-4.	4.0	33
237	MultistepDstdevelopment and ring current composition changes during the 4-6 June 1991 magnetic storm. Journal of Geophysical Research, 2002, 107, SMP 33-1-SMP 33-22.	3.3	108
238	A model-derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 2002, 107, SMP 2-1-SMP 2-12.	3.3	131
239	A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. Journal of Geophysical Research, 2002, 107, SIA 5-1.	3.3	81
240	University of Michigan MHD results of the Geospace Global Circulation Model metrics challenge. Journal of Geophysical Research, 2002, 107, SMP 12-1.	3.3	61
241	Construction of a particle climatology for the study of the effects of solar particle fluxes on the atmosphere. Advances in Space Research, 2002, 29, 1513-1522.	2.6	3
242	A semiempirical equatorial mapping of AMIE convection electric potentials (MACEP) for the January 10, 1997, magnetic storm. Journal of Geophysical Research, 2001, 106, 12903-12917.	3.3	28
243	Three-fluid Ohm's law. Journal of Geophysical Research, 2001, 106, 8149-8156.	3.3	35
244	Using steady state MHD results to predict the global state of the magnetosphere-ionosphere system. Journal of Geophysical Research, 2001, 106, 30067-30076.	3.3	64
245	Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms. Journal of Geophysical Research, 2001, 106, 29531-29542.	3.3	88
246	Modeling of the solar wind originated energy input for the study of effects on the terrestrial thermosphere and ionosphere-introduction. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 483-487.	0.2	2
247	Empirical modeling of particle precipitation and the study of effects on the terrestrial thermosphere and ionosphere. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 489-493.	0.2	1
248	An empirical model of the ionospheric electric potential. Geophysical Research Letters, 2000, 27, 3675-3678.	4.0	41
249	The nightside poleward boundary of the auroral oval as seen by DMSP and the Ultraviolet Imager. Journal of Geophysical Research, 2000, 105, 21267-21280.	3.3	40
250	Transformation of high-latitude ionosphericFregion patches into blobs during the March 21, 1990, storm. Journal of Geophysical Research, 2000, 105, 5215-5230.	3.3	62
251	High-latitude ionospheric response to a sudden impulse event during northward IMF conditions. Journal of Geophysical Research, 2000, 105, 2521-2531.	3.3	38
252	Reply [to "Comment on "A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique―by A.J. Ridley et al.â€]. Journal of Geophysical Research, 1999, 104, 4393-4396.	3.3	23

#	Article	IF	CITATIONS
253	On the hemispheric symmetry in thermospheric nitric oxide. Geophysical Research Letters, 1999, 26, 1545-1548.	4.0	10
254	Variations of the thermospheric nitric oxide mass mixing ratio as a function of Kp, altitude, and magnetic local time. Geophysical Research Letters, 1999, 26, 1541-1544.	4.0	12
255	A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 1998, 103, 4023-4039.	3.3	210
256	Global analysis of three traveling vortex events during the November 1993 storm using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 1998, 103, 26349-26358.	3.3	21
257	Multi-instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996. Journal of Geophysical Research, 1998, 103, 23357-23372.	3.3	43
258	Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 1997, 102, 14563-14579.	3.3	68
259	Field line resonant pulsations associated with a strong dayside ionospheric shear convection flow reversal. Journal of Geophysical Research, 1997, 102, 4585-4596.	3.3	24
260	Characterization of the dynamic variations of the dayside highâ€latitude ionospheric convection reversal boundary and relationship to interplanetary magnetic field orientation. Journal of Geophysical Research, 1996, 101, 10919-10938.	3.3	24
261	Ionospheric observations of magnetospheric low-latitude boundary layer waves on August 4, 1991. Journal of Geophysical Research, 1995, 100, 21873-21884.	3.3	29
262	TWO MAJOR PROCESSES OF THE SOLAR WIND-MAGNETOSPHERE IONOSPHERE COUPLING. , 0, , 83-95.		0