
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9252752/publications.pdf Version: 2024-02-01



FDIC MEEEDE

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Predominant Autoantibody Production by Early Human B Cell Precursors. Science, 2003, 301, 1374-1377.                                                                                                          | 12.6 | 1,806     |
| 2  | Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. Journal of Immunological Methods, 2008, 329, 112-124.                            | 1.4  | 953       |
| 3  | Immune dysregulation in human subjects with heterozygous germline mutations in <i>CTLA4</i> .<br>Science, 2014, 345, 1623-1627.                                                                               | 12.6 | 745       |
| 4  | Reprogramming human T cell function and specificity with non-viral genome targeting. Nature, 2018, 559, 405-409.                                                                                              | 27.8 | 630       |
| 5  | Defective B cell tolerance checkpoints in systemic lupus erythematosus. Journal of Experimental<br>Medicine, 2005, 201, 703-711.                                                                              | 8.5  | 612       |
| 6  | DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000, 404, 510-514.                                                                                          | 27.8 | 514       |
| 7  | Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics, 2014, 46, 1135-1139.                                                                                              | 21.4 | 417       |
| 8  | Complement receptor 2/CD21â^' human naive B cells contain mostly autoreactive unresponsive clones.<br>Blood, 2010, 115, 5026-5036.                                                                            | 1.4  | 399       |
| 9  | The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunology, 2010, 11, 836-845.                                               | 14.5 | 295       |
| 10 | Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors<br>despite expressing different antibody reactivity. Journal of Clinical Investigation, 2005, 115, 1636-1643. | 8.2  | 287       |
| 11 | Impaired early B cell tolerance in patients with rheumatoid arthritis. Journal of Experimental<br>Medicine, 2005, 201, 1659-1667.                                                                             | 8.5  | 285       |
| 12 | Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 2022, 606, 585-593.                                                                                                        | 27.8 | 276       |
| 13 | The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive<br>B cells in humans. Journal of Clinical Investigation, 2011, 121, 3635-3644.                             | 8.2  | 259       |
| 14 | B-cell tolerance checkpoints in health and autoimmunity. Current Opinion in Immunology, 2008, 20, 632-638.                                                                                                    | 5.5  | 256       |
| 15 | Antibody regulation of B cell development. Nature Immunology, 2000, 1, 379-385.                                                                                                                               | 14.5 | 229       |
| 16 | IRAK-4- and MyD88-Dependent Pathways Are Essential for the Removal of Developing Autoreactive B<br>Cells in Humans. Immunity, 2008, 29, 746-757.                                                              | 14.3 | 201       |
| 17 | Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity<br>Maturation. Immunity, 2015, 43, 120-131.                                                                    | 14.3 | 186       |
| 18 | Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated with Apoptosis and<br>Oxidation. Molecular Medicine, 2008, 14, 665-674.                                                            | 4.4  | 174       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Germline hypomorphic CARD11 mutations in severe atopic disease. Nature Genetics, 2017, 49, 1192-1201.                                                                                                                 | 21.4 | 174       |
| 20 | CVID-associated TACI mutations affect autoreactive B cell selection and activation. Journal of Clinical Investigation, 2013, 123, 4283-4293.                                                                          | 8.2  | 153       |
| 21 | Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood, 2013, 121, 1595-1603.                                                                                   | 1.4  | 145       |
| 22 | Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13447-13454.                       | 7.1  | 143       |
| 23 | Bruton's Tyrosine Kinase Is Essential for Human B Cell Tolerance. Journal of Experimental Medicine, 2004, 200, 927-934.                                                                                               | 8.5  | 131       |
| 24 | Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. Journal of Clinical Investigation, 2001, 108, 879-886.                                                       | 8.2  | 130       |
| 25 | Specific peripheral B cell tolerance defects in patients with multiple sclerosis. Journal of Clinical Investigation, 2013, 123, 2737-2741.                                                                            | 8.2  | 130       |
| 26 | The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Annals of the New York Academy of Sciences, 2011, 1246, 1-10.                                                  | 3.8  | 128       |
| 27 | Surrogate Light Chain Expressing Human Peripheral B Cells Produce Self-reactive Antibodies. Journal of Experimental Medicine, 2004, 199, 145-150.                                                                     | 8.5  | 122       |
| 28 | Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proceedings of the United States of America, 2011, 108, 11554-11559.                                                          | 7.1  | 118       |
| 29 | CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. Journal of Experimental Medicine, 2007, 204, 1583-1593.                                                                  | 8.5  | 117       |
| 30 | Circulating human B cells that express surrogate light chains and edited receptors. Nature<br>Immunology, 2000, 1, 207-213.                                                                                           | 14.5 | 109       |
| 31 | A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood, 2017, 129, 959-969.                                                                        | 1.4  | 105       |
| 32 | Immunoglobulin Heavy Chain Variable Region Gene Replacement as a Mechanism for Receptor Revision<br>in Rheumatoid Arthritis Synovial Tissue B Lymphocytes. Journal of Experimental Medicine, 2000, 192,<br>1151-1164. | 8.5  | 100       |
| 33 | Circulating Human CD27â^'IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs. Journal of<br>Immunology, 2015, 195, 1417-1426.                                                                                | 0.8  | 99        |
| 34 | RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell, 2015, 162, 751-765.                                                                                                                                | 28.9 | 98        |
| 35 | lgM+lgD+CD27+ B cells are markedly reduced in IRAK-4–, MyD88-, and TIRAP- but not UNC-93B–deficient patients. Blood, 2012, 120, 4992-5001.                                                                            | 1.4  | 87        |
| 36 | Impaired Bâ€cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunological Reviews, 2019, 292, 90-101.                                                        | 6.0  | 86        |

ERIC MEFFRE

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dedicator of cytokinesis 8–deficient patients have aÂbreakdown in peripheral B-cell tolerance and<br>defectiveÂregulatory T cells. Journal of Allergy and Clinical Immunology, 2014, 134, 1365-1374.      | 2.9  | 79        |
| 38 | Interferon deficiency can lead to severe COVID. Nature, 2020, 587, 374-376.                                                                                                                               | 27.8 | 73        |
| 39 | Wiskott–Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. Journal of Autoimmunity, 2014, 50, 42-50.                                                           | 6.5  | 72        |
| 40 | A humanized mouse model of chronic COVID-19. Nature Biotechnology, 2022, 40, 906-920.                                                                                                                     | 17.5 | 71        |
| 41 | Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central<br>B Cell Tolerance. Immunity, 2015, 43, 884-895.                                                    | 14.3 | 69        |
| 42 | Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses. Journal of Allergy and Clinical Immunology, 2019, 143, 258-265. | 2.9  | 68        |
| 43 | Self-reactive VH4-34–expressing IgG B cells recognize commensal bacteria. Journal of Experimental<br>Medicine, 2017, 214, 1991-2003.                                                                      | 8.5  | 66        |
| 44 | AIRE expression controls the peripheral selection of autoreactive B cells. Science Immunology, 2019, 4, .                                                                                                 | 11.9 | 65        |
| 45 | PTPN22 inhibition resets defective human central B cell tolerance. Science Immunology, 2016, 1, .                                                                                                         | 11.9 | 64        |
| 46 | Rituximab does not reset defective early B cell tolerance checkpoints. Journal of Clinical<br>Investigation, 2015, 126, 282-287.                                                                          | 8.2  | 64        |
| 47 | Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production.<br>Brain, 2019, 142, 1598-1615.                                                                          | 7.6  | 62        |
| 48 | Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus. JCI Insight, 2018, 3,                                                                                                 | 5.0  | 59        |
| 49 | B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. , 2019, 7, 153.                                                                                                       |      | 58        |
| 50 | Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity.<br>Journal of Clinical Investigation, 2016, 126, 4219-4236.                                              | 8.2  | 56        |
| 51 | Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. Journal of Clinical Investigation, 2012, 122, 2141-2152.                                                       | 8.2  | 55        |
| 52 | CD19 controls Toll-like receptor 9 responses in human BÂcells. Journal of Allergy and Clinical<br>Immunology, 2016, 137, 889-898.e6.                                                                      | 2.9  | 50        |
| 53 | Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nature Communications, 2019, 10, 3106.                                           | 12.8 | 48        |
| 54 | Decreased somatic hypermutation induces an impaired peripheral B cell tolerance checkpoint. Journal of Clinical Investigation, 2016, 126, 4289-4302.                                                      | 8.2  | 46        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients.<br>Journal of Clinical Investigation, 2015, 125, 3941-3951.                                                                                 | 8.2  | 43        |
| 56 | Maturational characteristics of HIV-specific antibodies in viremic individuals. JCI Insight, 2016, 1, .                                                                                                                                      | 5.0  | 42        |
| 57 | Inflammationâ€independent defective early B cell tolerance checkpoints in rheumatoid arthritis.<br>Arthritis and Rheumatism, 2011, 63, 1237-1245.                                                                                            | 6.7  | 41        |
| 58 | Brief Report: Defective Early B Cell Tolerance Checkpoints in Sjögren's Syndrome Patients. Arthritis<br>and Rheumatology, 2017, 69, 2203-2208.                                                                                               | 5.6  | 40        |
| 59 | TNF receptor superfamily member 13b (TNFRSF13B) hemizygosity reveals transmembrane activator and CAML interactor haploinsufficiency at later stages of B-cell development. Journal of Allergy and Clinical Immunology, 2015, 136, 1315-1325. | 2.9  | 38        |
| 60 | Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity, 2013, 46, 148-156.                                                                                              | 2.6  | 37        |
| 61 | The V Gene Repertoires of Classical and Atypical Memory B Cells in Malaria-Susceptible West African<br>Children. Journal of Immunology, 2015, 194, 929-939.                                                                                  | 0.8  | 36        |
| 62 | Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human<br>B-cell tolerance. Journal of Allergy and Clinical Immunology, 2014, 133, 1149-1161.                                                      | 2.9  | 33        |
| 63 | Peripheral VH4+Âplasmablasts demonstrate autoreactive B cell expansion toward brain antigens in<br>early multiple sclerosis patients. Acta Neuropathologica, 2017, 133, 43-60.                                                               | 7.7  | 30        |
| 64 | Transitional B cells in quiescent SLE: An early checkpoint imprinted by IFN. Journal of Autoimmunity, 2019, 102, 150-158.                                                                                                                    | 6.5  | 30        |
| 65 | Autoreactivity in naÃ <sup>-</sup> ve human fetal B cells is associated with commensal bacteria recognition.<br>Science, 2020, 369, 320-325.                                                                                                 | 12.6 | 29        |
| 66 | TACI Isoforms Regulate Ligand Binding and Receptor Function. Frontiers in Immunology, 2018, 9, 2125.                                                                                                                                         | 4.8  | 26        |
| 67 | Autoantibody selection and production in early human life. Journal of Clinical Investigation, 2007, 117, 598-601.                                                                                                                            | 8.2  | 26        |
| 68 | Accumulation of Antigen-Driven Lymphoproliferations in Complement Receptor 2/CD21â^'/low B Cells<br>From Patients With SjA¶gren's Syndrome. Arthritis and Rheumatology, 2018, 70, 298-307.                                                   | 5.6  | 24        |
| 69 | Autosomal primary immunodeficiencies affecting human bone marrow B-cell differentiation.<br>Immunological Reviews, 2000, 178, 91-98.                                                                                                         | 6.0  | 22        |
| 70 | High-throughput identification of autoantibodies that target the human exoproteome. Cell Reports<br>Methods, 2022, 2, 100172.                                                                                                                | 2.9  | 22        |
| 71 | Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies.<br>Journal of Experimental Medicine, 2017, 214, 2471-2490.                                                                              | 8.5  | 17        |
| 72 | Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell, 2021,<br>81, 2094-2111.e9.                                                                                                                     | 9.7  | 17        |

ERIC MEFFRE

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | HSC extrinsic sex-related and intrinsic autoimmune disease–related human B-cell variation is<br>recapitulated in humanized mice. Blood Advances, 2017, 1, 2007-2018.                            | 5.2  | 16        |
| 74 | Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Science Translational Medicine, 2019, 11, .                                                      | 12.4 | 15        |
| 75 | Positive and negative selection shape the human naive B cell repertoire. Journal of Clinical<br>Investigation, 2022, 132, .                                                                     | 8.2  | 14        |
| 76 | B-Cell Chronic Lymphocytic Leukemia (B-CLL) Cells Express Antibodies Reactive with Antigenic Epitopes Expressed on the Surface of Common Bacteria Blood, 2006, 108, 25-25.                      | 1.4  | 13        |
| 77 | Response: common variable immunodeficiency patients with increased CD21â^'/lo B cells suffer from altered receptor editing and defective central B-cell tolerance. Blood, 2011, 118, 5977-5978. | 1.4  | 12        |
| 78 | Smith-Magenis Syndrome Patients Often Display Antibody Deficiency but Not Other Immune<br>Pathologies. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1344-1350.e3.          | 3.8  | 11        |
| 79 | Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID.<br>Journal of Clinical Investigation, 2020, 130, 4411-4422.                                        | 8.2  | 11        |
| 80 | Polyreactive Monoclonal Antibodies Synthesized by Some B-CLL Cells Recognize Specific Antigens on<br>Viable and Apoptotic T Cells Blood, 2006, 108, 2813-2813.                                  | 1.4  | 11        |
| 81 | The First B-Cell Tolerance Checkpoint in Mice and Humans: Control by AID. Advances in Immunology, 2018, 139, 51-92.                                                                             | 2.2  | 10        |
| 82 | Defective early B cell tolerance checkpoints in patients with systemic sclerosis allow the production of selfâ€antigenâ€specific clones. Arthritis and Rheumatology, 2021, , .                  | 5.6  | 10        |
| 83 | A novel ATM mutation associated with elevated atypical lymphocyte populations, hyper-IgM, and cutaneous granulomas. Clinical Immunology, 2019, 200, 55-63.                                      | 3.2  | 8         |
| 84 | A Novel AICDA Splice-Site Mutation in Two Siblings with HIGM2 Permits Somatic Hypermutation but Abrogates Mutational Targeting. Journal of Clinical Immunology, 2022, 42, 771-782.              | 3.8  | 4         |
| 85 | B-CLL Antibodies Comprised of Stereotypic VH1-69, D3-16, and JH3 Rearrangements Immunoprecipitate<br>Cellular Protein(s) Blood, 2006, 108, 2816-2816.                                           | 1.4  | 2         |
| 86 | Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated with Apoptosis and Catabolic Chemical Modifications. Blood, 2008, 112, 3150-3150.                                    | 1.4  | 1         |
| 87 | ZAP-70 Expression in Non Tumoral B Cells: Role in B Tolerance Breakdown?. Blood, 2018, 132, 1114-1114.                                                                                          | 1.4  | 1         |
| 88 | Big impact of microRNAs on central B cell tolerance. Nature Immunology, 2016, 17, 353-354.                                                                                                      | 14.5 | 0         |
| 89 | B-cell biology, tolerance, and autoantibodies. , 2021, , 71-80.                                                                                                                                 |      | 0         |
| 90 | Generation and characterisation of monoclonal antibodies from single RA synovial B cells. Annals of the Rheumatic Diseases, 2012, 71, A40.3-A41.                                                | 0.9  | 0         |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | CD25-Dependent Feedback Control of the B-Cell Receptor and Its Oncogenic Mimics in B-Cell<br>Malignancies. Blood, 2018, 132, 776-776.                            | 1.4 | 0         |
| 92 | Immunoepidemiology of Immune Dysfunction. , 2019, , 127-148.                                                                                                     |     | 0         |
| 93 | Dynamic Assembly of a Feedback Complex to Regulate Oncogenic B-Cell Receptor-Signaling. Blood, 2019, 134, 393-393.                                               | 1.4 | Ο         |
| 94 | Co-Expression of SYK and ZAP70 Subverts Negative B-Cell Selection and Enables Oncogenic Signaling in<br>Multiple B-Cell Malignancies. Blood, 2019, 134, 295-295. | 1.4 | 0         |
| 95 | Pharmacological Targeting of PI3K-Dependent Central Tolerance Mechanisms in Refractory<br>Pre-Germinal Center B-Cell Malignancies. Blood, 2021, 138, 2267-2267.  | 1.4 | 0         |