
Andrée Delahaye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9252148/publications.pdf Version: 2024-02-01

ΔΝΙΠΡΑΩΓ ΠΕΙ ΛΗΛΥΕ

#	Article	IF	CITATIONS
1	Machine learning applications in drug development. Computational and Structural Biotechnology Journal, 2020, 18, 241-252.	4.1	135
2	Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nature Neuroscience, 2016, 19, 223-232.	14.8	131
3	Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	7.6	97
4	The E148QMEFV allele is not implicated in the development of familial Mediterranean fever. Human Mutation, 2003, 22, 339-340.	2.5	88
5	Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clinical Genetics, 2014, 86, 326-334.	2.0	88
6	Haploinsufficiency of <i>SOX5</i> at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Human Mutation, 2012, 33, 728-740.	2.5	85
7	Familial CHARGE syndrome because of <i>CHD7</i> mutation: clinical intra―and interfamilial variability. Clinical Genetics, 2007, 72, 112-121.	2.0	76
8	Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biology, 2016, 17, 245.	8.8	75
9	A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nature Communications, 2018, 9, 3561.	12.8	75
10	WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. Journal of Medical Genetics, 2015, 52, 61-70.	3.2	74
11	Genome-wide analysis of differential RNA editing in epilepsy. Genome Research, 2017, 27, 440-450.	5.5	73
12	Clinical and molecular findings in 39 patients with KBG syndrome caused by deletion or mutation of <i>ANKRD11</i> . American Journal of Medical Genetics, Part A, 2016, 170, 2847-2859.	1.2	62
13	MEFV analysis is of particularly weak diagnostic value for recurrent fevers in Western European Caucasian patients. Arthritis and Rheumatism, 2005, 52, 3603-3605.	6.7	56
14	Recurrent mutations in the <i>CDKL5</i> gene: Genotype–phenotype relationships. American Journal of Medical Genetics, Part A, 2012, 158A, 1612-1619.	1.2	53
15	Chromosome 22q13.3 deletion syndrome with a de novo interstitial 22q13.3 cryptic deletion disrupting SHANK3. European Journal of Medical Genetics, 2009, 52, 328-332.	1.3	51
16	Further delineation of the 17p13.3 microdeletion involving YWHAE but distal to PAFAH1B1: Four additional patients. European Journal of Medical Genetics, 2010, 53, 303-308.	1.3	44
17	16p13.11 microduplication in 45 new patients: refined clinical significance and genotype–phenotype correlations. Journal of Medical Genetics, 2020, 57, 301-307.	3.2	44
18	2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features?. Journal of Medical Genetics, 2009, 46, 847-855.	3.2	43

Andrée Delahaye

#	Article	IF	CITATIONS
19	Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1. European Journal of Human Genetics, 2015, 23, 1010-1018.	2.8	35
20	Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes: 12 new cases. European Journal of Human Genetics, 2017, 25, 694-701.	2.8	33
21	Pre―and postnatal phenotype of 6p25 deletions involving the <i>FOXC1</i> gene. American Journal of Medical Genetics, Part A, 2012, 158A, 2430-2438.	1.2	30
22	Identification of gene copy number variations in patients with mental retardation using array-CGH: Novel syndromes in a large French series. European Journal of Medical Genetics, 2010, 53, 66-75.	1.3	29
23	Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder. Molecular Autism, 2015, 6, 19.	4.9	29
24	Clinical Evaluation of a Reverse Hybridization Assay for the Molecular Detection of Twelve MEFV Gene Mutations. Clinical Chemistry, 2003, 49, 1942-1945.	3.2	27
25	HOXC4 homeoprotein efficiently expands human hematopoietic stem cells and triggers similar molecular alterations as HOXB4. Haematologica, 2012, 97, 168-178.	3.5	26
26	Cerebral small-vessel disease associated with <i>COL4A1</i> and <i>COL4A2</i> gene duplications. Neurology, 2014, 83, 1029-1031.	1.1	24
27	Cell Metabolic Alterations due to Mcph1 Mutation in Microcephaly. Cell Reports, 2020, 31, 107506.	6.4	23
28	Genomic imbalances detected by array-CGH in patients with syndromal ocular developmental anomalies. European Journal of Human Genetics, 2012, 20, 527-533.	2.8	19
29	Molecular characterization of a de novo 6q24.2q25.3 duplication interrupting <i>UTRN</i> in a patient with arthrogryposis. American Journal of Medical Genetics, Part A, 2010, 152A, 1781-1788.	1.2	13
30	Mutations in the C-terminus of CDKL5: proceed with caution. European Journal of Human Genetics, 2014, 22, 270-272.	2.8	12
31	Integrated systemsâ€genetic analyses reveal a network target for delaying glioma progression. Annals of Clinical and Translational Neurology, 2019, 6, 1616-1638.	3.7	8
32	CDK13-related disorder: Report of a series of 18 previously unpublished individuals and description of an epigenetic signature. Genetics in Medicine, 2022, 24, 1096-1107.	2.4	8
33	Retrospective Diagnosis of Pallister-Killian Syndrome by CGH Array. Fetal Diagnosis and Therapy, 2006, 21, 485-488.	1.4	7
34	Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Molecular Psychiatry, 2022, 27, 4092-4102.	7.9	7
35	New evidence that biallelic loss of function in <i>EEF1B2</i> gene leads to intellectual disability. Clinical Genetics, 2020, 97, 639-643.	2.0	5
36	Impact of Fetal Growth Restriction on the Neonatal Microglial Proteome in the Rat. Nutrients, 2021, 13, 3719.	4.1	4

Andrée Delahaye

#	Article	IF	CITATIONS
37	First cryptic balanced reciprocal translocation mosaicism and familial transmission. American Journal of Medical Genetics, Part A, 2008, 146A, 2971-2974.	1.2	3
38	Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. European Journal of Medical Genetics, 2020, 63, 103814.	1.3	3
39	Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. Journal of Neuropathology and Experimental Neurology, 2021, 80, 634-648.	1.7	3
40	Chromosomal microarray analysis in ocular developmental anomalies. Expert Review of Molecular Diagnostics, 2012, 12, 425-427.	3.1	2
41	Reply to Pubpeer anonymous contributors: incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1. European Journal of Human Genetics, 0, , .	2.8	0