Raymond Schuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9252072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 2002, 418, 884-889.	27.8	585
2	Novel Phage Lysin Capable of Killing the Multidrug-Resistant Gram-Negative Bacterium Acinetobacter baumannii in a Mouse Bacteremia Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1983-1991.	3.2	214
3	PlyC: A multimeric bacteriophage lysin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10765-10770.	7.1	197
4	ldentification of a Broadly Active Phage Lytic Enzyme with Lethal Activity against Antibiotic-Resistant Enterococcus faecalis and Enterococcus faecium. Journal of Bacteriology, 2004, 186, 4808-4812.	2.2	196
5	Combination Therapy With Lysin CF-301 and Antibiotic Is Superior to Antibiotic Alone for Treating Methicillin-Resistant Staphylococcus aureus–Induced Murine Bacteremia. Journal of Infectious Diseases, 2014, 209, 1469-1478.	4.0	165
6	Lysins: the arrival of pathogen-directed anti-infectives. Journal of Medical Microbiology, 2013, 62, 1506-1516.	1.8	162
7	Reinventing phage therapy: are the parts greater than the sum?. Nature Biotechnology, 2006, 24, 1508-1511.	17.5	154
8	The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations. PLoS ONE, 2009, 4, e6532.	2.5	144
9	Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	122
10	Detailed Genomic Analysis of the Wβ and γ Phages Infecting Bacillus anthracis : Implications for Evolution of Environmental Fitness and Antibiotic Resistance. Journal of Bacteriology, 2006, 188, 3037-3051.	2.2	99
11	A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Molecular Microbiology, 1999, 34, 675-689.	2.5	94
12	MxiE Regulates Intracellular Expression of Factors Secreted by the Shigella flexneri 2a Type III Secretion System. Journal of Bacteriology, 2002, 184, 4409-4419.	2.2	83
13	The 1.6ÂÃ Crystal Structure of the Catalytic Domain of PlyB, a Bacteriophage Lysin Active Against Bacillus anthracis. Journal of Molecular Biology, 2007, 366, 540-550.	4.2	81
14	Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. Journal of Clinical Investigation, 2020, 130, 3750-3760.	8.2	78
15	MxiM and MxiJ, Base Elements of the Mxi-Spa Type III Secretion System of Shigella , Interact with and Stabilize the MxiD Secretin in the Cell Envelope. Journal of Bacteriology, 2001, 183, 6991-6998.	2.2	75
16	PlyPH, a Bacteriolytic Enzyme with a Broad pH Range of Activity and Lytic Action against Bacillus anthracis. Journal of Bacteriology, 2006, 188, 2711-2714.	2.2	74
17	nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology (United Kingdom), 2007, 153, 2363-2372.	1.8	71
18	Development of a high throughput assay for indirectly measuring phage growth using the OmniLog TM system. Bacteriophage, 2012, 2, 159-167.	1.9	71

RAYMOND SCHUCH

#	Article	IF	CITATIONS
19	Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	62
20	Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Current Opinion in Microbiology, 2016, 33, 18-24.	5.1	56
21	Genomic Sequence of C 1 , the First Streptococcal Phage. Journal of Bacteriology, 2003, 185, 3325-3332.	2.2	51
22	The Antistaphylococcal Lysin, CF-301, Activates Key Host Factors in Human Blood To Potentiate Methicillin-Resistant <i>Staphylococcus aureus</i> Bacteriolysis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	51
23	Beyond the Chromosome: The Prevalence of Unique Extra-Chromosomal Bacteriophages with Integrated Virulence Genes in Pathogenic Staphylococcus aureus. PLoS ONE, 2014, 9, e100502.	2.5	48
24	Anthrax SET Protein. Journal of Biological Chemistry, 2013, 288, 23458-23472.	3.4	44
25	Use of a Bacteriophage Lysin to Identify a Novel Target for Antimicrobial Development. PLoS ONE, 2013, 8, e60754.	2.5	41
26	Identifying Active Phage Lysins through Functional Viral Metagenomics. Applied and Environmental Microbiology, 2010, 76, 7181-7187.	3.1	36
27	A structural basis for the allosteric regulation of nonâ€hydrolysing UDPâ€GlcNAc 2â€epimerases. EMBO Reports, 2008, 9, 199-205.	4.5	35
28	Exebacase Demonstrates <i>In Vitro</i> Synergy with a Broad Range of Antibiotics against both Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	33
29	A Novel Spore Protein, ExsM, Regulates Formation of the Exosporium in <i>Bacillus cereus</i> and <i>Bacillus anthracis</i> and Affects Spore Size and Shape. Journal of Bacteriology, 2010, 192, 4012-4021.	2.2	32
30	Postantibiotic and Sub-MIC Effects of Exebacase (Lysin CF-301) Enhance Antimicrobial Activity against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32
31	Genetic Structure of the nadA and nadB Antivirulence Loci in Shigella spp. Journal of Bacteriology, 2007, 189, 6482-6486.	2.2	29
32	Rapid DNA Library Construction for Functional Genomic and Metagenomic Screening. Applied and Environmental Microbiology, 2008, 74, 1649-1652.	3.1	29
33	Spa33, a Cell Surface-Associated Subunit of the Mxi-Spa Type III Secretory Pathway of Shigella flexneri, Regulates Ipa Protein Traffic. Infection and Immunity, 2001, 69, 2180-2189.	2.2	28
34	Exebacase in Addition to Daptomycin Is More Active than Daptomycin or Exebacase Alone in Methicillin-Resistant Staphylococcus aureus Osteomyelitis in Rats. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
35	The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against <i>Bacillus cereus Sensu Lato</i> Isolates. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
36	A Genetic Screen to Identify Bacteriophage Lysins. Methods in Molecular Biology, 2009, 502, 307-319.	0.9	22

RAYMOND SCHUCH

#	Article	IF	CITATIONS
37	Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
38	Identification of a Ligand on the Wip1 Bacteriophage Highly Specific for a Receptor on Bacillus anthracis. Journal of Bacteriology, 2013, 195, 4355-4364.	2.2	18
39	Novel Algorithms Reveal Streptococcal Transcriptomes and Clues about Undefined Genes. PLoS Computational Biology, 2007, 3, e132.	3.2	14
40	Effect of the Lysin Exebacase on Cardiac Vegetation Progression in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Endocarditis as Determined by Echocardiography. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	14
41	Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Frontiers in Microbiology, 2022, 13, 841905.	3.5	14
42	Discovery of Novel Putative Inhibitors of UDP-GlcNAc 2-Epimerase as Potent Antibacterial Agents. ACS Medicinal Chemistry Letters, 2013, 4, 1142-1147.	2.8	13
43	Synergistic Activity of Exebacase (CF-301) in Addition to Daptomycin against Staphylococcus aureus in a Neutropenic Murine Thigh Infection Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
44	Complete Genome Sequence of Bacillus cereus <i>Sensu Lato</i> Bacteriophage Bcp1. Genome Announcements, 2014, 2, .	0.8	12
45	In vitro activity of Exebacase (CF-301) against clinical Staphylococcus aureus surveillance isolates from the United States, Europe, and Latin America, 2015–2017. Diagnostic Microbiology and Infectious Disease, 2019, 95, 114879.	1.8	10
46	Determination of MIC Quality Control Parameters for Exebacase, a Novel Lysin with Antistaphylococcal Activity. Journal of Clinical Microbiology, 2021, 59, e0311720.	3.9	10
47	The Mxi-Spa Type III Secretory Pathway ofShigella flexneri Requires an Outer Membrane Lipoprotein, MxiM, for Invasin Translocation. Infection and Immunity, 1999, 67, 1982-1991.	2.2	10
48	Crowd control: <i>Bacillus anthracis</i> and quorum sensing. Virulence, 2010, 1, 57-59.	4.4	6
49	Isolation of Bacteriophages from Environmental Sources, and Creation and Functional Screening of Phage DNA Libraries. Current Protocols in Essential Laboratory Techniques, 2013, 7, 13.3.1.	2.6	6
50	Isolation, Culture, and Characterization of Bacteriophages. Current Protocols in Essential Laboratory Techniques, 2013, 7, 4.4.1.	2.6	6
51	Exebacase in Addition to Daptomycin against MRSA. Antimicrobial Agents and Chemotherapy, 2021, 65, e0012821.	3.2	6
52	Exebacase Is Active In Vitro in Pulmonary Surfactant and Is Efficacious Alone and Synergistic with Daptomycin in a Mouse Model of Lethal Staphylococcus aureus Lung Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, e0272320.	3.2	6
53	Development of a Broth Microdilution Method for Exebacase Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2021, 65, e0258720.	3.2	5
54	Activity of Exebacase (CF-301) against Biofilms Formed by Staphylococcus epidermidis Strains Isolated from Prosthetic Joint Infections. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	4

RAYMOND SCHUCH

#	Article	IF	CITATIONS
55	Activity of Lysin CF-296 Alone and in Addition to Daptomycin in a Rat Model of Experimental Methicillin-Resistant Staphylococcus aureus Osteomyelitis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3
56	Efficacy assessment of lysin CF-296 in addition to daptomycin or vancomycin against Staphylococcus aureus in the murine thigh infection model. Journal of Antimicrobial Chemotherapy, 2021, 76, 2622-2628.	3.0	2
57	Lysin CF-301 Demonstrates In Vitro Synergy with Conventional Antibiotics against Staphylococcus aureus. Open Forum Infectious Diseases, 2017, 4, S370-S370.	0.9	1
58	1550. PK-PD Relationship and PK Driver of Efficacy of the Novel Antibacterial Lysin Exebacase (CF-301) in Pre-Clinical Models. Open Forum Infectious Diseases, 2019, 6, S565-S566.	0.9	1
59	712. Activity of Exebacase (CF-301) Against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms on Orthopedic Kirschner Wires. Open Forum Infectious Diseases, 2019, 6, S320-S320.	0.9	1