Jing Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9252022/publications.pdf

Version: 2024-02-01

186265 434195 4,536 30 28 31 citations h-index g-index papers 32 32 32 3634 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Performance Anion Exchange Membrane Fuel Cells Enabled by Fluoropoly(olefin) Membranes. Advanced Functional Materials, 2019, 29, 1902059.	14.9	128
2	Effect of Micromorphology on Alkaline Polymer Electrolyte Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 469-477.	8.0	36
3	Highly conductive and stable hybrid ionic cross-linked sulfonated PEEK for fuel cell. Electrochimica Acta, 2018, 291, 353-361.	5. 2	17
4	Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers. Macromolecules, 2017, 50, 2329-2337.	4.8	103
5	Cationic Side-Chain Attachment to Poly(Phenylene Oxide) Backbones for Chemically Stable and Conductive Anion Exchange Membranes. Chemistry of Materials, 2017, 29, 5321-5330.	6.7	133
6	Elastic Long-Chain Multication Cross-Linked Anion Exchange Membranes. Macromolecules, 2017, 50, 3323-3332.	4.8	159
7	Functionalization of Poly(2,6-dimethyl-1,4-phenylene oxide)s with Hindered Fluorene Side Chains for Anion Exchange Membranes. Macromolecules, 2016, 49, 3300-3309.	4.8	107
8	Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry. Polymer Chemistry, 2016, 7, 2464-2475.	3.9	131
9	Varying the microphase separation patterns of alkaline polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 4071-4081.	10.3	61
10	Multication Side Chain Anion Exchange Membranes. Macromolecules, 2016, 49, 815-824.	4.8	303
11	Cheap carbon black-based high-performance electrocatalysts for oxygen reduction reaction. Chemical Communications, 2015, 51, 1972-1975.	4.1	55
12	An Effective Approach for Alleviating Cation-Induced Backbone Degradation in Aromatic Ether-Based Alkaline Polymer Electrolytes. ACS Applied Materials & Enterfaces, 2015, 7, 2809-2816.	8.0	79
13	Carbonation effects on the performance of alkaline polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2015, 40, 6655-6660.	7.1	42
14	Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2015, 300, 279-284.	7.8	68
15	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	4.1	85
16	Mechanically Tough and Chemically Stable Anion Exchange Membranes from Rigid-Flexible Semi-Interpenetrating Networks. Chemistry of Materials, 2015, 27, 6689-6698.	6.7	149
17	Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?. Energy and Environmental Science, 2015, 8, 177-181.	30.8	418
18	Constructing ionic highway in alkaline polymer electrolytes. Energy and Environmental Science, 2014, 7, 354-360.	30.8	439

#	Article	IF	CITATIONS
19	Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2013, 3, 1726-1729.	11.2	337
20	A strategy for disentangling the conductivity–stability dilemma in alkaline polymer electrolytes. Energy and Environmental Science, 2013, 6, 2912.	30.8	150
21	Ultrathin composite membrane of alkaline polymer electrolyte for fuel cell applications. Journal of Materials Chemistry A, 2013, 1, 12497.	10.3	56
22	Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode. International Journal of Hydrogen Energy, 2013, 38, 16264-16268.	7.1	77
23	Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application. International Journal of Hydrogen Energy, 2013, 38, 1983-1987.	7.1	61
24	Highly Stable Alkaline Polymer Electrolyte Based on a Poly(ether ether ketone) Backbone. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13405-13411.	8.0	91
25	First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy and Environmental Science, 2012, 5, 7869.	30.8	234
26	Designing Advanced Alkaline Polymer Electrolytes for Fuel Cell Applications. Accounts of Chemical Research, 2012, 45, 473-481.	15.6	359
27	Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress. Science China Chemistry, 2010, 53, 357-364.	8.2	80
28	Highâ€Performance Alkaline Polymer Electrolyte for Fuel Cell Applications. Advanced Functional Materials, 2010, 20, 312-319.	14.9	449
29	Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 ${\rm \^{A}}^{\circ}{\rm C}$. Chemical Communications, 2010, 46, 8597.	4.1	122
30	Microstructure characteristics of hot-pressing Pr–Fe–B–Cu. Journal of Applied Physics, 2003, 93, 8677-8679.	2.5	2