
Michael W Nachman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bidirectional Introgression between <i>Mus musculus domesticus</i> and <i>Mus spretus</i> . Genome Biology and Evolution, 2022, 14, .	2.5	11
2	The Contribution of Genetic and Environmental Effects to Bergmann's Rule and Allen's Rule in House Mice. American Naturalist, 2022, 199, 691-704.	2.1	20
3	The genomic basis of high-elevation adaptation in wild house mice (<i>Mus musculus domesticus</i>) from South America. Genetics, 2022, 220, .	2.9	7
4	Gene expression plasticity and desert adaptation in house mice*. Evolution; International Journal of Organic Evolution, 2021, 75, 1477-1491.	2.3	23
5	The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genetics, 2021, 17, e1009495.	3.5	26
6	The population genetics of crypsis in vertebrates: recent insights from mice, hares, and lizards. Heredity, 2020, 124, 1-14.	2.6	24
7	The gut microbiota and Bergmann's rule in wild house mice. Molecular Ecology, 2020, 29, 2300-2311.	3.9	28
8	Experimental Evidence for Adaptation to Species-Specific Gut Microbiota in House Mice. MSphere, 2019, 4, .	2.9	27
9	Host genetic determinants of the gut microbiota of wild mice. Molecular Ecology, 2019, 28, 3197-3207.	3.9	76
10	Gene Expression Networks Across Multiple Tissues Are Associated with Rates of Molecular Evolution in Wild House Mice. Genes, 2019, 10, 225.	2.4	12
11	Altitudinal variation of the gut microbiota in wild house mice. Molecular Ecology, 2019, 28, 2378-2390.	3.9	77
12	Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Molecular Ecology, 2018, 27, 949-958.	3.9	25
13	The genomic basis of environmental adaptation in house mice. PLoS Genetics, 2018, 14, e1007672.	3.5	65
14	Transmission modes of the mammalian gut microbiota. Science, 2018, 362, 453-457.	12.6	189
15	Gene regulation underlies environmental adaptation in house mice. Genome Research, 2018, 28, 1636-1645.	5.5	51
16	Chitinase genes (<i>CHIA</i> s) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Science Advances, 2018, 4, eaar6478.	10.3	55
17	Gene Regulation and Speciation. Trends in Genetics, 2017, 33, 68-80.	6.7	149
18	Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proceedings of the United States of America, 2017, 114, 13768-13773	7.1	121

MICHAEL W NACHMAN

#	Article	IF	CITATIONS
19	Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice. PLoS Genetics, 2016, 12, e1005891.	3.5	46
20	Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice. PLoS ONE, 2016, 11, e0163720.	2.5	84
21	Natural history collections as windows on evolutionary processes. Molecular Ecology, 2016, 25, 864-881.	3.9	199
22	Gene regulation and speciation in house mice. Genome Research, 2016, 26, 451-461.	5.5	104
23	Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3585-3593.	1.7	27
24	Speciation and reduced hybrid female fertility in house mice. Evolution; International Journal of Organic Evolution, 2015, 69, 2468-2481.	2.3	15
25	Insights into mammalian biology from the wild house mouse Mus musculus. ELife, 2015, 4, .	6.0	134
26	The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 2014, 10, e1003519.	3.5	82
27	Genome-Wide Patterns of Differentiation Among House Mouse Subspecies. Genetics, 2014, 198, 283-297.	2.9	33
28	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	16.3	850
29	Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nature Communications, 2014, 5, 4800.	12.8	117
30	Genomics and museum specimens. Molecular Ecology, 2013, 22, 5966-5968.	3.9	29
31	Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 409-421.	4.0	339
32	Subspecific origin and haplotype diversity in the laboratory mouse. Nature Genetics, 2011, 43, 648-655.	21.4	439
33	Adaptive Introgression of Anticoagulant Rodent Poison Resistance by Hybridization between Old World Mice. Current Biology, 2011, 21, 1296-1301.	3.9	282
34	Recombination and Speciation: Loci Near Centromeres Are More Differentiated Than Loci Near Telomeres Between Subspecies of the European Rabbit (<i>Oryctolagus cuniculus</i>). Genetics, 2009, 181, 593-606.	2.9	92
35	Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Research, 2008, 18, 67-76.	5.5	235

Linkage Disequilibrium in Wild Mice. PLoS Genetics, 2007, 3, e144.

3.5 108

MICHAEL W NACHMAN

#	Article	IF	CITATIONS
37	The Genetics of Adaptive Coat Color in Gophers: Coding Variation at Mc1r Is Not Responsible for Dorsal Color Differences. Journal of Heredity, 2007, 98, 567-574.	2.4	17
38	The genetic basis of adaptation: lessons from concealing coloration in pocket mice. Genetica, 2005, 123, 125-136.	1.1	33
39	Nucleotide Variation at Msn and Alas2, Two Genes Flanking the Centromere of the X Chromosome in Humans. Genetics, 2004, 167, 423-437.	2.9	15
40	Haldane and the first estimates of the human mutation rate. Journal of Genetics, 2004, 83, 231-233.	0.7	27
41	The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5268-5273.	7.1	462
42	Variation in recombination rate across the genome: evidence and implications. Current Opinion in Genetics and Development, 2002, 12, 657-663.	3.3	214
43	Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nature Genetics, 2000, 26, 221-224.	21.4	92
44	Contrasting Evolutionary Histories of Two Introns of the Duchenne Muscular Dystrophy Gene, Dmd, in Humans. Genetics, 2000, 155, 1855-1864.	2.9	73
45	Estimate of the Mutation Rate per Nucleotide in Humans. Genetics, 2000, 156, 297-304.	2.9	1,023
46	Microsatellite Variation and Recombination Rate in the Human Genome. Genetics, 2000, 156, 1285-1298.	2.9	116
47	Deleterious mutations in animal mitochondrial DNA. Genetica, 1998, 102/103, 61-69.	1.1	102
48	Deleterious Mutations at the Mitochondrial ND3 Gene in South American Marsh Rats (Holochilus). Genetics, 1998, 150, 359-368.	2.9	23
49	DNA Variability and Recombination Rates at X-Linked Loci in Humans. Genetics, 1998, 150, 1133-1141.	2.9	194