List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9249740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505, 117-120.	27.8	3,138
2	N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 2011, 7, 885-887.	8.0	2,936
3	Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science, 2011, 333, 1300-1303.	12.6	2,898
4	ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 2013, 49, 18-29.	9.7	2,549
5	N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161, 1388-1399.	28.9	2,446
6	A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology, 2014, 10, 93-95.	8.0	2,342
7	Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science, 2011, 333, 1303-1307.	12.6	2,332
8	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	28.9	2,222
9	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
10	Global Epigenomic Reconfiguration During Mammalian Brain Development. Science, 2013, 341, 1237905.	12.6	1,609
11	Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 2017, 18, 31-42.	37.0	1,592
12	N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature, 2015, 518, 560-564.	27.8	1,482
13	Gene expression regulation mediated through reversible m6A RNA methylation. Nature Reviews Genetics, 2014, 15, 293-306.	16.3	1,401
14	YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017, 27, 315-328.	12.0	1,220
15	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
16	m 6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 2017, 31, 591-606.e6.	16.8	1,131
17	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	9.7	1,096
18	m 6 A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Reports, 2017, 18, 2622-2634.	6.4	1,026

#	Article	IF	CITATIONS
19	Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 2011, 29, 68-72.	17.5	955
20	Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome. Cell, 2012, 149, 1368-1380.	28.9	912
21	FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 2014, 24, 1403-1419.	12.0	869
22	YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. ELife, 2017, 6, .	6.0	815
23	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
24	The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 2016, 530, 441-446.	27.8	765
25	RNA modifications modulate gene expression during development. Science, 2018, 361, 1346-1349.	12.6	762
26	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
27	5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 2011, 14, 1607-1616.	14.8	746
28	RNA <i>N</i> ⁶ -methyladenosine methylation in post-transcriptional gene expression regulation. Genes and Development, 2015, 29, 1343-1355.	5.9	727
29	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	12.0	696
30	RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017, 543, 573-576.	27.8	685
31	Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature, 2019, 566, 270-274.	27.8	681
32	VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery, 2018, 4, 10.	6.7	643
33	Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cell, 2018, 69, 1028-1038.e6.	9.7	618
34	DNA Methylation on N6-Adenine in C.Âelegans. Cell, 2015, 161, 868-878.	28.9	602
35	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	10.3	592
36	N6-Methyladenine DNA Modification in Drosophila. Cell, 2015, 161, 893-906.	28.9	570

#	Article	IF	CITATIONS
37	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	28.9	567
38	Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nature Chemical Biology, 2014, 10, 927-929.	8.0	552
39	Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Molecular Cell, 2018, 71, 973-985.e5.	9.7	506
40	Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming. Cell, 2013, 153, 678-691.	28.9	502
41	N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas. Cell, 2015, 161, 879-892.	28.9	477
42	Selective fluorescent probes for live-cell monitoring of sulphide. Nature Communications, 2011, 2, 495.	12.8	472
43	m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 2019, 10, 2782.	12.8	468
44	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
45	Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell, 2014, 157, 979-991.	28.9	451
46	m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 2017, 542, 475-478.	27.8	437
47	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	8.2	432
48	Efficient and quantitative high-throughput tRNA sequencing. Nature Methods, 2015, 12, 835-837.	19.0	426
49	Probing <i>N</i> ⁶ -methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. Rna, 2013, 19, 1848-1856.	3.5	421
50	<i>N</i> ⁶ -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367, 580-586.	12.6	406
51	ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell, 2016, 167, 816-828.e16.	28.9	366
52	Grand Challenge Commentary: RNA epigenetics?. Nature Chemical Biology, 2010, 6, 863-865.	8.0	363
53	Oxidative demethylation of 3â€methylthymine and 3â€methyluracil in singleâ€stranded DNA and RNA by mouse and human FTO. FEBS Letters, 2008, 582, 3313-3319.	2.8	359
54	m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 2018, 563, 249-253.	27.8	354

#	Article	IF	CITATIONS
55	FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nature Communications, 2013, 4, 1798.	12.8	349
56	Unique features of the m6A methylome in Arabidopsis thaliana. Nature Communications, 2014, 5, 5630.	12.8	342
57	Highâ€Resolution <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) Map Using Photoâ€Crosslinkingâ€Assisted m ⁶ A Sequencing. Angewandte Chemie - International Edition, 2015, 54, 1587-1590.	13.8	319
58	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	11.0	318
59	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	7.8	316
60	Reversible RNA adenosine methylation in biological regulation. Trends in Genetics, 2013, 29, 108-115.	6.7	314
61	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	10.2	299
62	Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Research, 2017, 27, 1216-1230.	12.0	298
63	Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron, 2018, 97, 313-325.e6.	8.1	292
64	Mechanism and Function of Oxidative Reversal of DNA and RNA Methylation. Annual Review of Biochemistry, 2014, 83, 585-614.	11.1	289
65	5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing of Transcriptome Reprogramming during Differentiation. Molecular Cell, 2014, 56, 286-297.	9.7	285
66	Transcriptome-wide Mapping of Internal N7-Methylguanosine Methylome in Mammalian mRNA. Molecular Cell, 2019, 74, 1304-1316.e8.	9.7	276
67	Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chemical Biology, 2012, 8, 328-330.	8.0	273
68	Single-base mapping of m ⁶ A by an antibody-independent method. Science Advances, 2019, 5, eaax0250.	10.3	270
69	Glutamate Dehydrogenase 1 Signals through Antioxidant Glutathione Peroxidase 1 to Regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 2015, 27, 257-270.	16.8	269
70	Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Research, 2014, 24, 1493-1496.	12.0	266
71	A protein engineered to bind uranyl selectively and with femtomolar affinity. Nature Chemistry, 2014, 6, 236-241.	13.6	262
72	5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Research, 2017, 27, 1243-1257.	12.0	262

#	Article	IF	CITATIONS
73	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	8.0	258
74	Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells. PLoS Genetics, 2011, 7, e1002154.	3.5	250
75	Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity Protein hnRNPG. Molecular Cell, 2019, 76, 70-81.e9.	9.7	248
76	DNA Hydroxymethylation Profiling Reveals that WT1 Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia. Cell Reports, 2014, 9, 1841-1855.	6.4	237
77	Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nature Protocols, 2012, 7, 2159-2170.	12.0	236
78	ALKBH10B Is an RNA <i>N</i> ⁶ -Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell, 2017, 29, 2995-3011.	6.6	235
79	Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature, 2008, 452, 961-965.	27.8	230
80	YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Molecular Cancer, 2019, 18, 163.	19.2	230
81	Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction. Journal of the American Chemical Society, 2015, 137, 6116-6119.	13.7	229
82	DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nature Reviews Molecular Cell Biology, 2015, 16, 705-710.	37.0	228
83	N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. ELife, 2016, 5, .	6.0	227
84	Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nature Communications, 2016, 7, 13052.	12.8	225
85	RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell, 2020, 27, 64-80.e9.	11.1	225
86	6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nature Cell Biology, 2015, 17, 1484-1496.	10.3	224
87	Silver-Catalyzed Intermolecular Amination of CH Groups. Angewandte Chemie - International Edition, 2007, 46, 5184-5186.	13.8	222
88	Efficient Aziridination of Olefins Catalyzed by a Unique Disilver(I) Compound. Journal of the American Chemical Society, 2003, 125, 16202-16203.	13.7	219
89	Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods, 2012, 9, 75-77.	19.0	219
90	Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chemical Biology, 2016, 23, 74-85.	5.2	219

#	Article	IF	CITATIONS
91	Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nature Methods, 2017, 14, 695-698.	19.0	218
92	Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biology, 2018, 19, 69.	8.8	216
93	Structural insight into substrate preference for TET-mediated oxidation. Nature, 2015, 527, 118-122.	27.8	213
94	A Silver-Catalyzed Intramolecular Amidation of Saturated CH Bonds. Angewandte Chemie - International Edition, 2004, 43, 4210-4212.	13.8	209
95	Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. Cell Reports, 2018, 25, 1816-1828.e4.	6.4	207
96	Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nature Chemistry, 2015, 7, 968-979.	13.6	205
97	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	12.0	203
98	YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell, 2020, 38, 857-871.e7.	16.8	203
99	Mapping recently identified nucleotide variants in the genome and transcriptome. Nature Biotechnology, 2012, 30, 1107-1116.	17.5	197
100	Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Research, 2015, 25, 1801-1811.	5.5	195
101	Direct Reversal of DNA Alkylation Damage. Chemical Reviews, 2006, 106, 215-232.	47.7	193
102	An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nature Genetics, 2020, 52, 1024-1035.	21.4	191
103	Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular Cell, 2016, 62, 848-861.	9.7	189
104	FMRP Modulates Neural Differentiation through m6A-Dependent mRNA Nuclear Export. Cell Reports, 2019, 28, 845-854.e5.	6.4	188
105	An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. , 2006, 2, 591-595.		183
106	A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chemical Science, 2012, 3, 2920.	7.4	183
107	Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut, 2019, 68, 2195-2205.	12.1	180
108	Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nature Communications, 2016, 7, 10813.	12.8	177

#	Article	IF	CITATIONS
109	The emerging biology of RNA post-transcriptional modifications. RNA Biology, 2017, 14, 156-163.	3.1	177
110	Intramolecular Additions of Alcohols and Carboxylic Acids to Inert Olefins Catalyzed by Silver(I) Triflate. Organic Letters, 2005, 7, 4553-4556.	4.6	174
111	Recent Advances in Silverâ€Catalyzed Nitrene, Carbene, and Silyleneâ€Transfer Reactions. European Journal of Organic Chemistry, 2006, 2006, 4313-4322.	2.4	169
112	N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nature Microbiology, 2020, 5, 584-598.	13.3	169
113	Widespread occurrence of <i>N</i> ⁶ -methyladenosine in bacterial mRNA. Nucleic Acids Research, 2015, 43, 6557-6567.	14.5	165
114	N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathogens, 2018, 14, e1006995.	4.7	162
115	EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nature Communications, 2021, 12, 177.	12.8	160
116	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	7.9	159
117	m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nature Metabolism, 2019, 1, 765-774.	11.9	158
118	TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 2018, 50, 83-95.	21.4	156
119	N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Molecular Cell, 2020, 78, 382-395.e8.	9.7	156
120	A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Research, 2018, 28, 1062-1076.	12.0	152
121	Nitrene Transfer Reactions Catalyzed by Gold Complexes. Journal of Organic Chemistry, 2006, 71, 5876-5880.	3.2	151
122	Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15461-15466.	7.1	151
123	Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Research, 2021, 49, e7-e7.	14.5	149
124	An Exceptionally Selective Lead(II)-Regulatory Protein fromRalstonia Metallidurans: Development of a Fluorescent Lead(II) Probe. Angewandte Chemie - International Edition, 2005, 44, 2715-2719.	13.8	148
125	Chemical Modifications in the Life of an mRNA Transcript. Annual Review of Genetics, 2018, 52, 349-372.	7.6	147
126	METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nature Cell Biology, 2022, 24, 205-216.	10.3	143

#	Article	IF	CITATIONS
127	Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature, 2015, 523, 621-625.	27.8	141
128	Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nature Methods, 2015, 12, 1047-1050.	19.0	141
129	Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Molecular Cancer, 2020, 19, 130.	19.2	140
130	The <i>Pseudomonas aeruginosa</i> multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13586-13591.	7.1	139
131	Dynamic RNA Modifications in Posttranscriptional Regulation. Molecular Cell, 2014, 56, 5-12.	9.7	139
132	A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nature Chemical Biology, 2020, 16, 887-895.	8.0	133
133	RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nature Communications, 2018, 9, 1163.	12.8	132
134	N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer's disease. Genome Biology, 2021, 22, 17.	8.8	131
135	N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation. Nature Cell Biology, 2019, 21, 319-327.	10.3	130
136	The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5â€Methoxycarbonylmethyluridine at the Wobble Position of tRNA. Angewandte Chemie - International Edition, 2010, 49, 8885-8888.	13.8	129
137	A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angewandte Chemie - International Edition, 2012, 51, 9652-9656.	13.8	129
138	Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Research, 2016, 26, 103-118.	12.0	129
139	The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nature Chemical Biology, 2014, 10, 21-28.	8.0	128
140	A Highly Sensitive and Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations. Molecular Cell, 2016, 63, 711-719.	9.7	128
141	Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biology, 2013, 11, 4.	3.8	125
142	Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Molecular Cell, 2015, 59, 345-358.	9.7	125
143	DNA Repair by Reversal of DNA Damage. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012575-a012575.	5.5	121
144	Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genomics, 2019, 20, 445.	2.8	120

#	Article	IF	CITATIONS
145	A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 71, 198-211.	2.5	119
146	RNA epigenetics — chemical messages for posttranscriptional gene regulation. Current Opinion in Chemical Biology, 2016, 30, 46-51.	6.1	119
147	MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genetics, 2017, 13, e1006793.	3.5	117
148	Chemical Modification-Assisted Bisulfite Sequencing (CAB-Seq) for 5-Carboxylcytosine Detection in DNA. Journal of the American Chemical Society, 2013, 135, 9315-9317.	13.7	116
149	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Trends in Genetics, 2016, 32, 320-321.	6.7	115
150	m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nature Biotechnology, 2022, 40, 1210-1219.	17.5	115
151	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	12.8	113
152	Evolution of a reverse transcriptase to map N1-methyladenosine in human messenger RNA. Nature Methods, 2019, 16, 1281-1288.	19.0	113
153	Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nature Genetics, 2020, 52, 939-949.	21.4	113
154	Golden Pigment Production and Virulence Gene Expression Are Affected by Metabolisms in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 3068-3077.	2.2	111
155	Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning. Neuron, 2018, 99, 283-292.e5.	8.1	110
156	Lysine Acetylation Activates 6-Phosphogluconate Dehydrogenase to Promote Tumor Growth. Molecular Cell, 2014, 55, 552-565.	9.7	107
157	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	7.1	105
158	A Non-Heme Iron-Mediated Chemical Demethylation in DNA and RNA. Accounts of Chemical Research, 2009, 42, 519-529.	15.6	102
159	Genome-wide analysis of N ¹ -methyl-adenosine modification in human tRNAs. Rna, 2010, 16, 1317-1327.	3.5	102
160	RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nature Biotechnology, 2021, 39, 1581-1588.	17.5	102
161	Reading RNA methylation codes through methyl-specific binding proteins. RNA Biology, 2014, 11, 669-672.	3.1	99
162	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	8.8	97

#	Article	IF	CITATIONS
163	FTO mediates LINE1 m ⁶ A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376, 968-973.	12.6	97
164	m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron, 2020, 105, 293-309.e5.	8.1	96
165	Synthesis of a FTO Inhibitor with Anticonvulsant Activity. ACS Chemical Neuroscience, 2014, 5, 658-665.	3.5	94
166	Hydroxymethylation at Gene Regulatory Regions Directs Stem/Early Progenitor Cell Commitment during Erythropoiesis. Cell Reports, 2014, 6, 231-244.	6.4	93
167	Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nature Communications, 2016, 7, 11301.	12.8	93
168	Quorum-sensing <i>agr</i> mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9095-9100.	7.1	92
169	2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural and Molecular Biology, 2018, 25, 208-216.	8.2	92
170	Targeted m ⁶ A Reader Proteins To Study Epitranscriptomic Regulation of Single RNAs. Journal of the American Chemical Society, 2018, 140, 11974-11981.	13.7	92
171	Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Research, 2021, 49, 5779-5797.	14.5	92
172	TET Family Proteins: Oxidation Activity, Interacting Molecules, and Functions in Diseases. Chemical Reviews, 2015, 115, 2225-2239.	47.7	89
173	Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nature Communications, 2017, 8, 15102.	12.8	88
174	The Structure of the Human ACT Protein Bound to DNA and its Implications for Damage Detection. Journal of Molecular Biology, 2005, 350, 657-666.	4.2	87
175	METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer's disease through aberrant cell cycle events. Molecular Neurodegeneration, 2021, 16, 70.	10.8	87
176	Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus. Journal of Biological Chemistry, 2009, 284, 23517-23524.	3.4	85
177	Sprouts of RNA epigenetics. RNA Biology, 2013, 10, 915-918.	3.1	85
178	The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine–containing mRNAs. Journal of Biological Chemistry, 2019, 294, 19889-19895.	3.4	84
179	Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Molecular Cell, 2020, 80, 633-647.e7.	9.7	83
180	A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex–mediated DNA replication. Blood, 2021, 138, 2838-2852.	1.4	83

#	Article	IF	CITATIONS
181	Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis. Nature Communications, 2017, 8, 15903.	12.8	82
182	Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Genome Research, 2018, 28, 1067-1078.	5.5	80
183	Dynamics of spontaneous flipping of a mismatched base in DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8043-8048.	7.1	79
184	Nucleic Acid Oxidation in DNA Damage Repair and Epigenetics. Chemical Reviews, 2014, 114, 4602-4620.	47.7	79
185	AirSR, a [2Fe-2S] Cluster-Containing Two-Component System, Mediates Global Oxygen Sensing and Redox Signaling in Staphylococcus aureus. Journal of the American Chemical Society, 2012, 134, 305-314.	13.7	78
186	Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nature Communications, 2015, 6, 5849.	12.8	78
187	Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Research, 2015, 25, 386-389.	12.0	77
188	Control of Early B Cell Development by the RNA N6-Methyladenosine Methylation. Cell Reports, 2020, 31, 107819.	6.4	77
189	Engineering A Uranyl pecific Binding Protein from NikR. Angewandte Chemie - International Edition, 2009, 48, 2339-2341.	13.8	76
190	ALKBH4-dependent demethylation of actin regulates actomyosin dynamics. Nature Communications, 2013, 4, 1832.	12.8	76
191	A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nature Communications, 2020, 11, 6161.	12.8	76
192	<i>Pseudomonas aeruginosa</i> OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Molecular Microbiology, 2010, 75, 76-91.	2.5	74
193	UO ₂ ²⁺ Uptake by Proteins: Understanding the Binding Features of the Super Uranyl Binding Protein and Design of a Protein with Higher Affinity. Journal of the American Chemical Society, 2014, 136, 17484-17494.	13.7	74
194	A Methylation-Dependent Electrostatic Switch Controls DNA Repair and Transcriptional Activation by E. coli Ada. Molecular Cell, 2005, 20, 117-129.	9.7	73
195	DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?. Nature Structural and Molecular Biology, 2017, 24, 503-506.	8.2	73
196	The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Research, 2014, 24, 1296-1307.	5.5	72
197	Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nature Communications, 2021, 12, 2183.	12.8	72
198	Keth-seq for transcriptome-wide RNA structure mapping. Nature Chemical Biology, 2020, 16, 489-492.	8.0	72

#	Article	IF	CITATIONS
199	Bisulfite-Free, Nanoscale Analysis of 5-Hydroxymethylcytosine at Single Base Resolution. Journal of the American Chemical Society, 2018, 140, 13190-13194.	13.7	71
200	REPIC: a database for exploring the N6-methyladenosine methylome. Genome Biology, 2020, 21, 100.	8.8	71
201	Inhibition of Copper Transport Induces Apoptosis in Triple-Negative Breast Cancer Cells and Suppresses Tumor Angiogenesis. Molecular Cancer Therapeutics, 2019, 18, 873-885.	4.1	69
202	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	9.1	69
203	A New Model of Spontaneous Colitis in Mice Induced by Deletion of an RNA m6A Methyltransferase Component METTL14 in T Cells. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 747-761.	4.5	69
204	QSER1 protects DNA methylation valleys from de novo methylation. Science, 2021, 372, .	12.6	69
205	Developing drugs targeting transition metal homeostasis. Current Opinion in Chemical Biology, 2017, 37, 26-32.	6.1	68
206	A Genetically Encoded FRET Sensor for Intracellular Heme. ACS Chemical Biology, 2015, 10, 1610-1615.	3.4	65
207	Pseudouridine in a new era of RNA modifications. Cell Research, 2015, 25, 153-154.	12.0	64
208	Baseâ€Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale. Angewandte Chemie - International Edition, 2016, 55, 14246-14249.	13.8	64
209	Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nature Communications, 2019, 10, 4595.	12.8	64
210	Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nature Methods, 2020, 17, 515-523.	19.0	64
211	Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nature Cancer, 2021, 2, 932-949.	13.2	64
212	Duplex interrogation by a direct DNA repair protein in search of base damage. Nature Structural and Molecular Biology, 2012, 19, 671-676.	8.2	62
213	Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. Journal of Inorganic Biochemistry, 2006, 100, 670-678.	3.5	61
214	METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
215	<i>N</i> ⁶ -Allyladenosine: A New Small Molecule for RNA Labeling Identified by Mutation Assay. Journal of the American Chemical Society, 2017, 139, 17213-17216.	13.7	59
216	Redox Signaling in Human Pathogens. Antioxidants and Redox Signaling, 2011, 14, 1107-1118.	5.4	58

#	Article	IF	CITATIONS
217	Base-resolution detection of <i>N</i> ⁴ -methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing. Nucleic Acids Research, 2015, 43, gkv738.	14.5	58
218	Circulating tumor DNA 5-hydroxymethylcytosine as a novel diagnostic biomarker for esophageal cancer. Cell Research, 2018, 28, 597-600.	12.0	57
219	A TET Homologue Protein from <i>Coprinopsis cinerea</i> (CcTET) That Biochemically Converts 5-Methylcytosine to 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxylcytosine. Journal of the American Chemical Society, 2014, 136, 4801-4804.	13.7	56
220	Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability. ACS Chemical Biology, 2016, 11, 470-477.	3.4	56
221	METTL14 is essential for β-cell survival and insulin secretion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2138-2148.	3.8	54
222	Damage Detection and Base Flipping in Direct DNA Alkylation Repair. ChemBioChem, 2009, 10, 417-423.	2.6	53
223	FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Research, 2016, 44, 8153-8164.	14.5	53
224	N6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Developmental Cell, 2020, 55, 737-753.e7.	7.0	51
225	Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Letters, 2014, 588, 892-898.	2.8	50
226	ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair, 2016, 44, 87-91.	2.8	50
227	YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biology, 2020, 18, e3000664.	5.6	50
228	Evolution of transcript modification by <i>N</i> ⁶ -methyladenosine in primates. Genome Research, 2017, 27, 385-392.	5.5	49
229	Detailed modeling of positive selection improves detection of cancer driver genes. Nature Communications, 2019, 10, 3399.	12.8	49
230	The Pseudomonas aeruginosa Global Regulator VqsR Directly Inhibits QscR To Control Quorum-Sensing and Virulence Gene Expression. Journal of Bacteriology, 2012, 194, 3098-3108.	2.2	48
231	Bioorthogonal Labeling of 5-Hydroxymethylcytosine in Genomic DNA and Diazirine-Based DNA Photo-Cross-Linking Probes. Accounts of Chemical Research, 2011, 44, 709-717.	15.6	46
232	RADAR: differential analysis of MeRIP-seq data with a random effect model. Genome Biology, 2019, 20, 294.	8.8	46
233	OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. ELife, 2018, 7, .	6.0	46
234	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45

#	Article	IF	CITATIONS
235	N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biology, 2018, 19, 200.	8.8	45
236	TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nature Communications, 2018, 9, 895.	12.8	44
237	Chromatin and transcriptional regulation by reversible RNA methylation. Current Opinion in Cell Biology, 2021, 70, 109-115.	5.4	44
238	Our views of dynamic <i>N</i> ⁶ -methyladenosine RNA methylation. Rna, 2018, 24, 268-272.	3.5	41
239	Cytokine-Regulated Phosphorylation and Activation of TET2 by JAK2 in Hematopoiesis. Cancer Discovery, 2019, 9, 778-795.	9.4	41
240	ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nature Cell Biology, 2021, 23, 684-691.	10.3	41
241	Modeling non-heme iron proteins. Current Opinion in Chemical Biology, 2004, 8, 201-208.	6.1	40
242	Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5010-5015.	7.1	40
243	Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Research, 2018, 28, 933-942.	5.5	40
244	Syntheses of Two 5-Hydroxymethyl-2â€2-deoxycytidine Phosphoramidites with TBDMS as the 5-Hydroxymethyl Protecting Group and Their Incorporation into DNA. Journal of Organic Chemistry, 2011, 76, 4182-4188.	3.2	39
245	Preparation and Characterization of the Native Iron(II)-Containing DNA Repair AlkB Protein Directly fromEscherichia coli. Journal of the American Chemical Society, 2004, 126, 16930-16936.	13.7	38
246	Structural insight into the oxidationâ€sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Reports, 2010, 11, 685-690.	4.5	38
247	Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response. Journal of Biological Chemistry, 2012, 287, 21102-21109.	3.4	38
248	Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Research, 2019, 29, 167-170.	12.0	38
249	N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathogens, 2021, 17, e1009421.	4.7	38
250	6mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda. Nature Communications, 2019, 10, 2219.	12.8	37
251	Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution. Nature Biotechnology, 2021, 39, 225-235.	17.5	37
252	Prognostic implications of 5-hydroxymethylcytosines from circulating cell-free DNA in diffuse large B-cell lymphoma. Blood Advances, 2019, 3, 2790-2799.	5.2	36

#	Article	IF	CITATIONS
253	Steady-State Hydrogen Peroxide Induces Glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Bacteriology, 2014, 196, 2499-2513.	2.2	35
254	Epigenetic DNA Modification <i>N</i> ⁶ -Methyladenine Causes Site-Specific RNA Polymerase II Transcriptional Pausing. Journal of the American Chemical Society, 2017, 139, 14436-14442.	13.7	35
255	Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae. Nucleic Acids Research, 2014, 42, 11472-11486.	14.5	34
256	5-Hydroxymethylcytosines in Circulating Cell-Free DNA Reveal Vascular Complications of Type 2 Diabetes. Clinical Chemistry, 2019, 65, 1414-1425.	3.2	34
257	Detection of 5-hydroxymethylcytosine in a combined glycosylation restriction analysis (CGRA) using restriction enzyme Taqαl. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5075-5077.	2.2	33
258	Application of a low cost array-based technique — TAB-Array — for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells. Genomics, 2014, 104, 358-367.	2.9	33
259	Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nature Communications, 2016, 7, 11000.	12.8	32
260	Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Scientific Reports, 2016, 6, 29565.	3.3	32
261	Progress toward liquid biopsies in pediatric solid tumors. Cancer and Metastasis Reviews, 2019, 38, 553-571.	5.9	32
262	Decoding pseudouridine: an emerging target for therapeutic development. Trends in Pharmacological Sciences, 2022, 43, 522-535.	8.7	32
263	High-Resolution Mapping of N6-Methyladenosine in Transcriptome and Genome Using a Photo-Crosslinking-Assisted Strategy. Methods in Enzymology, 2015, 560, 161-185.	1.0	31
264	Trapping Distinct Structural States of a Protein/DNA Interaction through Disulfide Crosslinking. Chemistry and Biology, 2002, 9, 1297-1303.	6.0	30
265	m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its disordered Câ€ŧerminal region. EMBO Journal, 2021, 40, e106309.	7.8	30
266	N ⁶ â€methyladenosine modification of lncRNA <i>Pvt1</i> governs epidermal stemness. EMBO Journal, 2021, 40, e106276.	7.8	30
267	The hunt for 5-hydroxymethylcytosine: the sixth base. Epigenomics, 2011, 3, 521-523.	2.1	29
268	Engineering Bacterial Two-Component System PmrA/PmrB to Sense Lanthanide Ions. Journal of the American Chemical Society, 2013, 135, 2037-2039.	13.7	29
269	Gluten-induced RNA methylation changes regulate intestinal inflammation via allele-specific <i>XPO1</i> translation in epithelial cells. Gut, 2022, 71, 68-76.	12.1	29
270	How Do DNA Repair Proteins Locate Potential Base Lesions? A Chemical Crosslinking Method to Investigate O6-Alkylguanine-DNA Alkyltransferases. Chemistry and Biology, 2003, 10, 827-835.	6.0	28

#	Article	IF	CITATIONS
271	Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. Journal of the American Chemical Society, 2019, 141, 8694-8697.	13.7	26

Nonsegmented Negative-Sense RNA Viruses Utilize <i>N</i>⁶ -Methyladenosine (m) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

273	METTL3 Regulates Liver Homeostasis, Hepatocyte Ploidy, and Circadian Rhythm–Controlled Gene Expression in Mice. American Journal of Pathology, 2022, 192, 56-71.	3.8	26
274	The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. Journal of Biological Chemistry, 2022, 298, 101590.	3.4	26
275	5-Hydroxymethylcytosine-mediated alteration of transposon activity associated with the exposure to adversein uteroenvironments in human. Human Molecular Genetics, 2016, 25, 2208-2219.	2.9	25
276	ldentification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Letters, 2016, 372, 157-165.	7.2	25
277	Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. British Journal of Cancer, 2022, 126, 228-237.	6.4	25
278	Panorama of DNA hairpin folding observed <i>via</i> diffusion-decelerated fluorescence correlation spectroscopy. Chemical Communications, 2012, 48, 7413-7415.	4.1	24
279	Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 151, 46-55.	1.9	24
280	HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease. Molecular Cell, 2021, 81, 5052-5065.e6.	9.7	24
281	The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice. Nature Communications, 2022, 13, 168.	12.8	24
282	"Gamete On―for m6A: YTHDF2 Exerts Essential Functions in Female Fertility. Molecular Cell, 2017, 67, 903-905.	9.7	23
283	5-Hydroxymethylcytosine Profiles in Circulating Cell-Free DNA Associate with Disease Burden in Children with Neuroblastoma. Clinical Cancer Research, 2020, 26, 1309-1317.	7.0	22
284	Detection of 5â€Hydroxymethylcytosine in DNA by Transferring a Ketoâ€Glucose by Using T4 Phage βâ€Glucosyltransferase. ChemBioChem, 2011, 12, 1682-1685.	2.6	21
285	Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chemical Science, 2019, 10, 7407-7417.	7.4	20
286	Single base resolution mapping of 2′-O-methylation sites in human mRNA and in 3′ terminal ends of small RNAs. Methods, 2019, 156, 85-90.	3.8	20
287	N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses. PLoS Biology, 2021, 19, e3001292.	5.6	20
288	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35,	17.5	19

#	Article	IF	CITATIONS
289	Aberrant RNA methylation triggers recruitment of an alkylation repair complex. Molecular Cell, 2021, 81, 4228-4242.e8.	9.7	18
290	Converting the Sacrificial DNA Repair Protein N-Ada into a Catalytic Methyl Phosphotriester Repair Enzyme. Journal of the American Chemical Society, 2003, 125, 1450-1451.	13.7	17
291	Damage prevention targeted. Nature, 2014, 508, 191-192.	27.8	17
292	Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. Journal of Physical Chemistry B, 2020, 124, 1160-1174.	2.6	16
293	LEADâ€m 6 Aâ€seq for Locusâ€Specific Detection of N 6 â€Methyladenosine and Quantification of Differential Methylation. Angewandte Chemie - International Edition, 2021, 60, 873-880.	13.8	16
294	KAS-seq: genome-wide sequencing of single-stranded DNA by N3-kethoxal–assisted labeling. Nature Protocols, 2022, 17, 402-420.	12.0	16
295	Site-specific m6A editing. Nature Chemical Biology, 2019, 15, 848-849.	8.0	15
296	5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease. Clinical Epigenetics, 2020, 12, 17.	4.1	15
297	Binding of ReO4 â^' with an engineered MoO4 2â^'-binding protein: towards a new approach in radiopharmaceutical applications. Journal of Biological Inorganic Chemistry, 2012, 17, 97-106.	2.6	14
298	Detection of mismatched 5-hydroxymethyluracil in DNA by selective chemical labeling. Methods, 2015, 72, 16-20.	3.8	14
299	Baseâ€Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale. Angewandte Chemie, 2016, 128, 14458-14461.	2.0	14
300	5-Hydroxymethylcytosine Profiles Are Prognostic of Outcome in Neuroblastoma and Reveal Transcriptional Networks That Correlate With Tumor Phenotype. JCO Precision Oncology, 2019, 3, 1-12.	3.0	14
301	Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth. Chemical Science, 2011, 2, 451-456.	7.4	13
302	DNA 5-Methylcytosine-Specific Amplification and Sequencing. Journal of the American Chemical Society, 2020, 142, 4539-4543.	13.7	13
303	5-Hydroxymethylcytosine profiles of cfDNA are highly predictive of R-CHOP treatment response in diffuse large B cell lymphoma patients. Clinical Epigenetics, 2021, 13, 33.	4.1	13
304	Alterations of 5-hydroxymethylation in circulating cell-free DNA reflect molecular distinctions of subtypes of non-Hodgkin lymphoma. Npj Genomic Medicine, 2021, 6, 11.	3.8	13
305	A fungal dioxygenase CcTet serves as a eukaryotic 6mA demethylase on duplex DNA. Nature Chemical Biology, 2022, 18, 733-741.	8.0	13
306	Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics, 2021, 113, 79-87.	2.9	12

#	Article	IF	CITATIONS
307	An integrative analysis of genome-wide 5-hydroxymethylcytosines in circulating cell-free DNA detects noninvasive diagnostic markers for gliomas. Neuro-Oncology Advances, 2021, 3, vdab049.	0.7	12
308	Viral RNA N6-methyladenosine modification modulates both innate and adaptive immune responses of human respiratory syncytial virus. PLoS Pathogens, 2021, 17, e1010142.	4.7	12
309	Identifying the m6A Methylome by Affinity Purification and Sequencing. Methods in Molecular Biology, 2018, 1649, 49-57.	0.9	11
310	5-Carboxylcytosine and Cytosine Protonation Distinctly Alter the Stability and Dehybridization Dynamics of the DNA Duplex. Journal of Physical Chemistry B, 2020, 124, 627-640.	2.6	11
311	High-Resolution Mapping of N 6-Methyladenosine Using m6A Crosslinking Immunoprecipitation Sequencing (m6A-CLIP-Seq). Methods in Molecular Biology, 2019, 1870, 69-79.	0.9	10
312	Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Molecular Cell, 2021, 81, 3833-3847.e11.	9.7	10
313	Nonenzymatic Labeling of 5â€Hydroxymethylcytosine in Nanopore Sequencing. ChemBioChem, 2013, 14, 1289-1290.	2.6	9
314	Tethering-facilitated DNA â€~opening' and complementary roles of β-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Research, 2020, 48, 12348-12364.	14.5	9
315	Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE, 2016, 11, e0154949.	2.5	9
316	Genome-wide profiling of DNA 5-hydroxymethylcytosine during rat Sertoli cell maturation. Cell Discovery, 2017, 3, 17013.	6.7	8
317	Preparation of Human Nuclear RNA m6A Methyltransferases and Demethylases and Biochemical Characterization of Their Catalytic Activity. Methods in Enzymology, 2015, 560, 117-130.	1.0	7
318	Chromate Binding and Removal by the Molybdateâ€Binding Protein ModA. ChemBioChem, 2017, 18, 633-637.	2.6	7
319	Making Changes: <i>N</i> ⁶ -Methyladenosine-Mediated Decay Drives the Endothelial-to-Hematopoietic Transition. Biochemistry, 2017, 56, 6077-6078.	2.5	7
320	Probing subcellular organic hydroperoxide formation via a genetically encoded ratiometric and reversible fluorescent indicator. Integrative Biology (United Kingdom), 2013, 5, 1485.	1.3	5
321	DNA cytosine hydroxymethylation levels are distinct among non-overlapping classes of peripheral blood leukocytes. Journal of Immunological Methods, 2016, 436, 1-15.	1.4	5
322	Phasing Gene Expression: mRNA N6-Methyladenosine Regulates Temporal Progression of Mammalian Cortical Neurogenesis. Biochemistry, 2018, 57, 1055-1056.	2.5	5
323	Transcriptome-Wide Detection of Internal N7-Methylguanosine. Methods in Molecular Biology, 2021, 2298, 97-104.	0.9	5
324	Impact of DNA sequences on DNA â€~opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair, 2021, 107, 103194.	2.8	5

#	Article	IF	CITATIONS
325	Fto Plays an Oncogenic Role in Acute Myeloid Leukemia As a N6-Methyladenosine RNA Demethylase. Blood, 2016, 128, 2706-2706.	1.4	5
326	AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking. Science China Chemistry, 2010, 53, 86-90.	8.2	4
327	Utility of Perioperative Measurement of Cell-Free DNA and Circulating Tumor DNA in Informing the Prognosis of Gl Cancers: A Systematic Review. JCO Precision Oncology, 2022, 6, e2100337.	3.0	4
328	The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome Biology, 2022, 23, 65.	8.8	4
329	Development of Mild Chemical Catalysis Conditions for m ¹ A-to-m ⁶ A Rearrangement on RNA. ACS Chemical Biology, 2022, , .	3.4	4
330	A highly sensitive and genetically encoded fluorescent reporter for ratiometric monitoring of quinones in living cells. Chemical Communications, 2013, 49, 8027.	4.1	3
331	mRNA acetylation: a new addition to the epitranscriptome. Cell Research, 2019, 29, 91-92.	12.0	3
332	Bromodomain and Extra-Terminal Motif Proteins (BETs) Mediate 5-Azacitidine Resistance in Myeloid Leukemia through Recruitment of an Active RNA Polymerase II Complex. Blood, 2016, 128, 746-746.	1.4	3
333	5-Hydroxymethylcytosine Signatures in Circulating Cell-Free DNA as Early Warning Biomarkers for COVID-19 Progression and Myocardial Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 781267.	3.7	3
334	Cover Picture: The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA (Angew. Chem. Int. Ed. 47/2010). Angewandte Chemie - International Edition, 2010, 49, 8765-8765.	13.8	2
335	Special Issue on Regulating the Central Dogma. Biochemistry, 2019, 58, 295-296.	2.5	2
336	Reply to â€~Are the 5-hydroxymethylcytosine-based wd-scores really superior over α-fetoprotein for the early diagnosis of hepatocellular carcinoma?'. Gut, 2020, 69, 1903-1904.	12.1	2
337	5-Hydroxymethylcytosine (5-hmC) Specific Enrichment. Bio-protocol, 2012, 2, .	0.4	2
338	Decoding the transcriptome and DNA methylome of human primordial germ cells. Science China Life Sciences, 2015, 58, 729-730.	4.9	1
339	Chemical decaging in living systems. National Science Review, 2015, 2, 250-251.	9.5	1
340	A glance at N6-methyladenosine in transcript isoforms. Nature Methods, 2016, 13, 624-625.	19.0	1
341	Multi-cancer detection and tissue of origin determination based on 5-hydroxymethylcytosine biomarkers in circulating cell-free DNA Journal of Clinical Oncology, 2021, 39, 3123-3123.	1.6	1
342	5-Hydroxymethylcytosines in circulating cell-free DNA and overall survival in patients with multiple myeloma Journal of Clinical Oncology, 2021, 39, 8032-8032.	1.6	1

Ę	#	Article	IF	CITATIONS
;	343	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
:	344	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
:	345	m 6 A facilitates hippocampusâ€dependent learning and memory through Ythdf1. FASEB Journal, 2018, 32, 787.6.	0.5	1
:	346	Global Detection of RNA Methylation by Click Degradation. ACS Central Science, 2020, 6, 2126-2129.	11.3	1
;	347	A Silver-Catalyzed Intramolecular Amidation of Saturated C—H Bonds ChemInform, 2004, 35, no.	0.0	0
:	348	Chemical methods to study protein-nucleic acid interactions. Nucleic Acids Symposium Series, 2009, 53, 43-43.	0.3	0
;	349	Titelbild: The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA (Angew. Chem. 47/2010). Angewandte Chemie, 2010, 122, 8947-8947.	2.0	0
:	350	Visualizing a protein's sugars. National Science Review, 2014, 1, 480-481.	9.5	0
:	351	Detecting hepatocellular carcinoma in blood. Cell Research, 2015, 25, 1279-1280.	12.0	0
;	352	Making your mark on DNA. Nature Chemistry, 2017, 9, 1040-1042.	13.6	0
;	353	LEADâ€m ⁶ Aâ€seq for Locusâ€Specific Detection of <i>N</i> ⁶ â€Methyladenosine and Quantification of Differential Methylation. Angewandte Chemie, 2021, 133, 886-893.	2.0	0
;	354	Oxidative Nucleic Acid Modification and Demodification. FASEB Journal, 2012, 26, 470.2.	0.5	0
;	355	5-Hydroxymethylcytosines of Circulating Cell-Free DNA and Prognosis in Diffuse Large B-Cell Lymphoma. Blood, 2018, 132, 2985-2985.	1.4	0
:	356	Global Detection of RNA Methylation by Click Degradation. ACS Central Science, 2020, 6, 2126-2129.	11.3	0
;	357	ACS Chemical Biology─2022 Editorial Statement. ACS Chemical Biology, 2022, 17, 1-1.	3.4	0
;	358	Genome-wide Analysis Reflects Novel 5-Hydroxymethylcytosines Implicated in Diabetic Nephropathy and the Biomarker Potential , 2022, 3, 49-60.		0
;	359	Utilization of nano-hmC-seal technology to detect epigenetic signatures of peritoneal metastasis in cell-free DNA (cfDNA) in patients with colorectal and high-grade appendiceal cancer Journal of Clinical Oncology, 2022, 40, e15510-e15510.	1.6	0