
Manuel Bañobre-LÃ3pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9249502/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics. Bioactive Materials, 2022, 8, 153-164.	15.6	20
2	Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics, 2022, 14, 506.	4.5	13
3	PLGA-Based Composites for Various Biomedical Applications. International Journal of Molecular Sciences, 2022, 23, 2034.	4.1	99
4	Doxorubicin delivery performance of superparamagnetic carbon multi-core shell nanoparticles: pH dependence, stability and kinetic insight. Nanoscale, 2022, 14, 7220-7232.	5.6	6
5	Antibiofilm Efficacy of the Pseudomonas aeruginosaÂPbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles. Viruses, 2022, 14, 964.	3.3	7
6	A novel amino phosphonate-coated magnetic nanoparticle as MRI contrast agent. Applied Surface Science, 2021, 543, 148824.	6.1	26
7	Stimulation and Suppression of the Innate Immune System through Nanotechnology. ACS Applied Nano Materials, 2021, 4, 2303-2316.	5.0	5
8	The clinical path to deliver encapsulated phages and lysins. FEMS Microbiology Reviews, 2021, 45, .	8.6	20
9	Graphene-Based Magnetic Nanoparticles for Theranostics: An Overview for Their Potential in Clinical Application. Nanomaterials, 2021, 11, 1073.	4.1	15
10	Experimental Studies of the Sedimentation, Stability and Thermal Conductivity of Two Different Nanofluids. Engineering Proceedings, 2021, 4, 35.	0.4	0
11	Pseudomonas aeruginosa PAO 1 In Vitro Time–Kill Kinetics Using Single Phages and Phage Formulations—Modulating Death, Adaptation, and Resistance. Antibiotics, 2021, 10, 877.	3.7	5
12	Magnetic Field Mapping Around Individual Magnetic Nanoparticle Agglomerates Using Nitrogenâ€Vacancy Centers in Diamond. Particle and Particle Systems Characterization, 2021, 38, 2100011.	2.3	3
13	Xanthan-Fe ₃ O ₄ Nanoparticle Composite Hydrogels for Non-Invasive Magnetic Resonance Imaging and Magnetically Assisted Drug Delivery. ACS Applied Nano Materials, 2021, 4, 7712-7729.	5.0	33
14	Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics, 2021, 13, 1248.	4.5	14
15	A novel and extremely stable nanofluid based on iron oxide nanoparticles: Experimental investigations on the thermal performance. Thermal Science and Engineering Progress, 2021, 26, 101085.	2.7	5
16	Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand. Cancers, 2021, 13, 4920.	3.7	11
17	Smart magnetic resonance imaging-based theranostics for cancer. Theranostics, 2021, 11, 8706-8737.	10.0	37
18	Solid Lipid Particles for Lung Metastasis Treatment. Pharmaceutics, 2021, 13, 93.	4.5	8

#	Article	IF	CITATIONS
19	Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Biomedical Materials (Bristol), 2021, 16, 015011.	3.3	10
20	Magnetic Hybrid Wax Nanocomposites as Externally Controlled Theranostic Vehicles: High MRI Enhancement and Synergistic Magnetically Assisted Thermo/Chemo Therapy. Chemistry - A European Journal, 2020, 26, 4531-4538.	3.3	12
21	Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics, 2020, 12, 637.	4.5	6
22	A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. Materials Science and Engineering C, 2020, 116, 111255.	7.3	26
23	Mapping intracellular thermal response of cancer cells to magnetic hyperthermia treatment. Nanoscale, 2020, 12, 21647-21656.	5.6	20
24	Organâ€onâ€aâ€Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small, 2020, 16, e2003517.	10.0	80
25	(Para)magnetic hybrid nanocomposites for dual MRI detection and treatment of solid tumours. Chemical Communications, 2020, 56, 8695-8698.	4.1	7
26	Synthesis, Characterization, and Evaluation of Superparamagnetic Doped Ferrites as Potential Therapeutic Nanotools. Chemistry of Materials, 2020, 32, 2220-2231.	6.7	50
27	Bacteriophages for Chronic Wound Treatment: From Traditional to Novel Delivery Systems. Viruses, 2020, 12, 235.	3.3	55
28	Dye-doped biodegradable nanoparticle SiO ₂ coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for <i>in vivo</i> imaging studies. Nanoscale, 2020, 12, 6164-6175.	5.6	22
29	Recent Progress on Manganeseâ€Based Nanostructures as Responsive MRI Contrast Agents. Chemistry - A European Journal, 2019, 25, 431-441.	3.3	61
30	<p>Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes</p> . International Journal of Nanomedicine, 2019, Volume 14, 5911-5924.	6.7	29
31	Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. ACS Omega, 2019, 4, 1931-1940.	3.5	10
32	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	4.1	41
33	Synthesis, characterization and <i>in vitro</i> validation of a magnetic zeolite nanocomposite with <i>T</i> ₂ -MRI properties towards theranostic applications. Journal of Materials Chemistry B, 2019, 7, 3351-3361.	5.8	15
34	Enhanced performance of cobalt ferrite encapsulated in graphitic shell by means of AC magnetically activated catalytic wet peroxide oxidation of 4-nitrophenol. Chemical Engineering Journal, 2019, 376, 120012.	12.7	17
35	A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry - A European Journal, 2018, 24, 7388-7397.	3.3	23
36	Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and Onâ€Đemand Release. Chemistry - A European Journal, 2018, 24, 8624-8631.	3.3	13

Manuel Bañobre-López

#	Article	IF	CITATIONS
37	Combining CXCR4-targeted and nontargeted nanoparticles for effective unassistedin vitromagnetic hyperthermia. Biointerphases, 2018, 13, 011005.	1.6	9
38	Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700845.	7.6	453
39	Tunable Performance of Manganese Oxide Nanostructures as MRI Contrast Agents. Chemistry - A European Journal, 2018, 24, 1221-1221.	3.3	2
40	Internalization studies on zeolite nanoparticles using human cells. Journal of Materials Chemistry B, 2018, 6, 469-476.	5.8	10
41	Tunable Performance of Manganese Oxide Nanostructures as MRI Contrast Agents. Chemistry - A European Journal, 2018, 24, 1295-1303.	3.3	25
42	Antiphase boundaries in truncated octahedron-shaped Zn-doped magnetite nanocrystals. Journal of Materials Chemistry C, 2018, 6, 12800-12807.	5.5	9
43	Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. Journal of Nanobiotechnology, 2018, 16, 92.	9.1	47
44	A Tailor-Made Protocol to Synthesize Yolk-Shell Graphene-Based Magnetic Nanoparticles for Nanomedicine. Journal of Carbon Research, 2018, 4, 55.	2.7	4
45	Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Scientific Reports, 2018, 8, 11487.	3.3	10
46	Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Materials Science and Engineering C, 2018, 93, 206-217.	7.3	56
47	A colloidally stable water dispersion of Ni nanowires as an efficient T ₂ -MRI contrast agent. Journal of Materials Chemistry B, 2017, 5, 3338-3347.	5.8	26
48	Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjugate Chemistry, 2017, 28, 362-370.	3.6	41
49	Design and validation of a new ratiometric intracellular pH imaging probe using lanthanide-doped upconverting nanoparticles. Dalton Transactions, 2017, 46, 13957-13965.	3.3	27
50	Highly Effective Antibacterial Vesicles Based on Peptide-Mimetic Alternating Copolymers for Bone Repair. Biomacromolecules, 2017, 18, 4154-4162.	5.4	50
51	Rapid Sonochemical Approach Produces Functionalized Fe ₃ O ₄ Nanoparticles with Excellent Magnetic, Colloidal, and Relaxivity Properties for MRI Application. Journal of Physical Chemistry C, 2017, 121, 24206-24222.	3.1	37
52	Probing T ₁ –T ₂ interactions and their imaging implications through a thermally responsive nanoprobe. Nanoscale, 2017, 9, 11318-11326.	5.6	8
53	Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Advanced Healthcare Materials, 2016, 5, 213-222.	7.6	50
54	Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1–T2 magnetic resonance imaging performance. Journal of Colloid and Interface Science, 2016, 472, 229-236.	9.4	22

#	Article	IF	CITATIONS
55	Sub-Micrometer Magnetic Nanocomposites: Insights into the Effect of Magnetic Nanoparticles Interactions on the Optimization of SAR and MRI Performance. ACS Applied Materials & Interfaces, 2016, 8, 25777-25787.	8.0	38
56	Green synthesis of multimodal â€~OFF–ON' activatable MRI/optical probes. Dalton Transactions, 2016, 45, 17672-17680.	3.3	20
57	Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	46
58	Magnetic Nanocolloids. , 2016, , 75-129.		3
59	Relevant Parameters for Magnetic Hyperthermia in Biological Applications: Agglomeration, Concentration, and Viscosity. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
60	Biomimetic Magnetic Silk Scaffolds. ACS Applied Materials & amp; Interfaces, 2015, 7, 6282-6292.	8.0	52
61	Kinetic impact of Pt seed morphology on the highly controlled growth of Ni-based nanostructures. RSC Advances, 2015, 5, 52033-52040.	3.6	1
62	A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957.	3.1	93
63	Multilayered Magnetic Gelatin Membrane Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 23098-23109.	8.0	34
64	Tuning the relaxation rates of dual-mode <i>T</i> ₁ / <i>T</i> ₂ nanoparticle contrast agents: a study into the ideal system. Nanoscale, 2015, 7, 16119-16128.	5.6	40
65	The Verwey transition in nanostructured magnetite produced by a combination of chimie douce and spark plasma sintering. Journal of Applied Physics, 2014, 115, 17E117.	2.5	7
66	Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	56
67	Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules. Journal of Materials Science: Materials in Medicine, 2014, 25, 2365-2371.	3.6	27
68	High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329.	3.1	26
69	Large-Scale Synthesis of Colloidal Fe ₃ O ₄ Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia. Journal of Physical Chemistry C, 2014, 118, 8691-8701.	3.1	226
70	Magnetic Nanoparticles for Biomedical Applications. , 2014, , 457-493.		7
71	Control of Bacterial Cells Growths by Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2013, 49, 3508-3511.	2.1	7
72	Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling, 2013, 29, 1225-1232.	2.2	38

#	Article	IF	CITATIONS
73	Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 2013, 18, 397-400.	0.6	427
74	Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. Journal of the Royal Society Interface, 2013, 10, 20120833.	3.4	168
75	Magnetization Drop at High Temperature in Oleic Acid-Coated Magnetite Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 3307-3310.	2.1	9
76	Superparamagnetic Nanocomposites Based on the Dispersion of Oleic Acid-Stabilized Magnetite Nanoparticles in a Diglycidylether of Bisphenol A-Based Epoxy Matrix: Magnetic Hyperthermia and Shape Memory. Journal of Physical Chemistry C, 2012, 116, 13421-13428.	3.1	75
77	Magnetic nanoparticles for application in cancer therapy. Journal of Magnetism and Magnetic Materials, 2012, 324, 3499-3502.	2.3	73
78	Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomaterialia, 2012, 8, 843-851.	8.3	253
79	Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. Journal of Applied Physics, 2011, 109, .	2.5	90
80	The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Research Letters, 2011, 6, 383.	5.7	139
81	Questionable collapse of the bulk modulus in CrN. Nature Materials, 2010, 9, 284-284.	27.5	2
82	Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth. Journal of Materials Chemistry, 2010, 20, 7360.	6.7	27
83	Innovative Biomimetic Hybrid Composites to Repair Multifunctional Anatomical Region. , 2010, , .		0
84	Competing Magnetism and Superconductivity in NaxCoO2 at Half Doping. Journal of the American Chemical Society, 2009, 131, 9632-9633.	13.7	7
85	Synthesis of Small Atomic Copper Clusters in Microemulsions. Langmuir, 2009, 25, 8208-8216.	3.5	168
86	Magnetic Properties of Ni/NiO Nanowires Deposited onto CNT/Pt Nanocomposites. Advanced Functional Materials, 2008, 18, 616-621.	14.9	56
87	Possible quantum criticality inNaxCoO2. Physical Review B, 2006, 73, .	3.2	6
88	Role of Doping and Dimensionality in the Superconductivity of NaxCoO2. Chemistry of Materials, 2005, 17, 1965-1968.	6.7	37
89	Evidence of weak ferromagnetism in chromium(III) oxide particles. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1547-1548.	2.3	11
90	Preliminary Evaluation of Novel Triglyceride-Based Nanocomposites for Biomedical Applications. Journal of the Brazilian Chemical Society, 0, , .	0.6	3