Roberto Araya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective activation of BK channels in smallâ€headed dendritic spines suppresses excitatory postsynaptic potentials. Journal of Physiology, 2022, 600, 2165-2187.	2.9	15
2	S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707.	2.9	15
3	A spike-timing-dependent plasticity rule for dendritic spines. Nature Communications, 2020, 11, 4276.	12.8	43
4	Probing Single Synapses via the Photolytic Release of Neurotransmitters. Frontiers in Synaptic Neuroscience, 2019, 11, 19.	2.5	10
5	Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Annals of Neurology, 2018, 84, 436-451.	5.3	19
6	Evolution of dopamine receptors: phylogenetic evidence suggests a later origin of the DRD _{2l} and DRD _{4rs} dopamine receptor gene lineages. PeerJ, 2018, 6, e4593.	2.0	9
7	Dendritic Morphology and Function. , 2016, , 297-331.		1
8	NOVA2-mediated RNA regulation is required for axonal pathfinding during development. ELife, 2016, 5, .	6.0	90
9	Dendritic Morphology and Function. , 2015, , 1-35.		0
10	Input transformation by dendritic spines of pyramidal neurons. Frontiers in Neuroanatomy, 2014, 8, 141.	1.7	52
11	Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proceedings of the United States of America, 2014, 111, E2895-904.	7.1	174
12	Spatial Light Modulator Microscopy. Cold Spring Harbor Protocols, 2013, 2013, pdb.top079517.	0.3	11
13	Dendritic Function. , 2013, , 221-254.		0
14	Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine. ACS Chemical Neuroscience, 2013, 4, 1163-1167.	3.5	82
15	Two-photon microscopy with diffractive optical elements and spatial light modulators. Frontiers in Neuroscience, 2010, 4, .	2.8	24
16	Fast two-photon neuronal imaging and control using a spatial light modulator and ruthenium compounds. Proceedings of SPIE, 2010, , .	0.8	1
17	RuBi-Glutamate: Two-photon and visible-light photoactivation of neurons and dendritic spines. Frontiers in Neural Circuits, 2009, 3, 2.	2.8	172
18	SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators. Frontiers in Neural Circuits, 2008, 2, 5.	2.8	297

Roberto Araya

#	Article	IF	CITATIONS
19	Sodium channels amplify spine potentials. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12347-12352.	7.1	71
20	Injury of skeletal muscle and specific cytokines induce the expression of gap junction channels in mouse dendritic cells. Journal of Cellular Physiology, 2007, 211, 649-660.	4.1	30
21	The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17961-17966.	7.1	229
22	Dendritic spines linearize the summation of excitatory potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18799-18804.	7.1	135
23	Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. Journal of Cell Science, 2005, 118, 27-37.	2.0	95
24	The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Research Reviews, 2004, 47, 174-188.	9.0	56
25	Dihydropyridine Receptors as Voltage Sensors for a Depolarization-evoked, IP3R-mediated, Slow Calcium Signal in Skeletal Muscle Cells. Journal of General Physiology, 2003, 121, 3-16.	1.9	98
26	Presence and Importance of Connexin43 During Myogenesis. Cell Communication and Adhesion, 2003, 10, 451-456.	1.0	40
27	Presence and Importance of Connexin43 During Myogenesis. Cell Communication and Adhesion, 2003, 10, 451-456.	1.0	6