Luisa Ciobanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924797/publications.pdf

Version: 2024-02-01

60 papers

1,478 citations

20 h-index 330143 37 g-index

68 all docs 68 docs citations

68 times ranked 1877 citing authors

#	Article	IF	CITATIONS
1	3D MR microscopy with resolution by by. Journal of Magnetic Resonance, 2002, 158, 178-182.	2.1	148
2	Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hearing Research, 2007, 228, 168-179.	2.0	130
3	The translocator protein ligand [18F]DPA-714 images glioma and activated microglia in vivo. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 811-823.	6.4	80
4	Water diffusion in brain cortex closely tracks underlying neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11636-11641.	7.1	73
5	Characterization of Glioma Microcirculation and Tissue Features Using Intravoxel Incoherent Motion Magnetic Resonance Imaging in a Rat Brain Model. Investigative Radiology, 2014, 49, 485-490.	6.2	69
6	Magnetic resonance imaging of biological cells. Progress in Nuclear Magnetic Resonance Spectroscopy, 2003, 42, 69-93.	7.5	68
7	Mesoscopic and microscopic imaging of sensory responses in the same animal. Nature Communications, 2019, 10, 1110.	12.8	66
8	Design and testing of high sensitivity microreceiver coil apparatus for nuclear magnetic resonance and imaging. Review of Scientific Instruments, 2001, 72, 2171-2179.	1.3	65
9	3D micron-scale MRI of single biological cells. Solid State Nuclear Magnetic Resonance, 2004, 25, 138-141.	2.3	65
10	Measuring Reaction Kinetics by Using Multiple Microcoil NMR Spectroscopy. Angewandte Chemie - International Edition, 2003, 42, 4669-4672.	13.8	54
11	Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 tesla in the healthy rat brain cortex. Magnetic Resonance in Medicine, 2014, 72, 492-500.	3.0	54
12	Non-Gaussian Diffusion Imaging for Enhanced Contrast of Brain Tissue Affected by Ischemic Stroke. PLoS ONE, 2014, 9, e89225.	2.5	53
13	Diffusion kurtosis imaging and logâ€normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR in Biomedicine, 2012, 25, 1295-1304.	2.8	52
14	An eight-coil high-frequency probehead design for high-throughput nuclear magnetic resonance spectroscopy. Journal of Magnetic Resonance, 2004, 170, 206-212.	2.1	42
15	A two-pool model to describe the IVIM cerebral perfusion. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2987-3000.	4.3	37
16	Parallel imaging for NMR microscopy at 14.1 Tesla. Magnetic Resonance in Medicine, 2005, 54, 9-13.	3.0	32
17	Functional magnetic resonance microscopy at single-cell resolution in <i>Aplysia californica</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8667-8672.	7.1	32
18	Effects of Anesthetic Agents on Brain Blood Oxygenation Level Revealed with Ultra-High Field MRI. PLoS ONE, 2012, 7, e32645.	2.5	28

#	Article	IF	Citations
19	Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS ONE, 2020, 15, e0229702.	2.5	26
20	Reduced data acquisition time in multi-dimensional NMR spectroscopy using multiple-coil probes. Journal of Magnetic Resonance, 2005, 173, 134-139.	2.1	21
21	fMRI contrast at high and ultrahigh magnetic fields: Insight from complementary methods. Neurolmage, 2015, 113, 37-43.	4.2	21
22	Inductively coupled RF coil design for simultaneous microimaging of multiple samples. Concepts in Magnetic Resonance Part B, 2008, 33B, 236-243.	0.7	20
23	Highlighting manganese dynamics in the nervous system of Aplysia californica using MEMRI at ultra-high field. NeuroImage, 2013, 76, 264-271.	4.2	20
24	Effects of hypotonic stress and ouabain on the apparent diffusion coefficient of water at cellular and tissue levels in <i>Aplysia</i> NMR in Biomedicine, 2014, 27, 280-290.	2.8	17
25	Systematic Analysis of the Improvements in Magnetic Resonance Microscopy with Ferroelectric Composite Ceramics. Advanced Materials, 2019, 31, e1900912.	21.0	17
26	Modulation of water diffusion by activation-induced neural cell swelling in Aplysia Californica. Scientific Reports, 2017, 7, 6178.	3.3	15
27	Sedation Agents Differentially Modulate Cortical and Subcortical Blood Oxygenation: Evidence from Ultra-High Field MRI at 17.2 T. PLoS ONE, 2014, 9, e100323.	2.5	14
28	A New Tool for In Vivo Study of Astrocyte Connexin 43 in Brain. Scientific Reports, 2019, 9, 18292.	3.3	13
29	Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Scientific Reports, 2019, 9, 4423.	3.3	12
30	Characterization of the Physicochemical Parameters of Dense Core Atrial Gland and Lucent Red Hemiduct Vesicles in Aplysia californica. Analytical Chemistry, 2004, 76, 2331-2335.	6.5	11
31	Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex. PLoS ONE, 2020, 15, e0228759.	2.5	10
32	Functional imaging with FENSI: Flowâ€enhanced signal intensity. Magnetic Resonance in Medicine, 2007, 58, 396-401.	3.0	9
33	Advances toward MR microscopy of single biological cells. Applied Magnetic Resonance, 2002, 22, 139.	1.2	8
34	Multiple echo NMR velocimetry: Fast and localized measurements of steady and pulsatile flows in small channels. Journal of Magnetic Resonance, 2007, 184, 337-343.	2.1	8
35	Intracellular manganese enhanced MRI signals reflect the frequency of action potentials in Aplysia neurons. Journal of Neuroscience Methods, 2018, 295, 121-128.	2.5	8
36	Imaging of two samples with a single transmit/receive channel using coupled ceramic resonators for MR microscopy at 17.2 T. NMR in Biomedicine, 2020, 33, e4397.	2.8	8

3

#	Article	IF	CITATIONS
37	A Semi-Analytical Model of High-Permittivity Dielectric Ring Resonators for Magnetic Resonance Imaging. IEEE Transactions on Antennas and Propagation, 2020, 68, 6317-6329.	5.1	8
38	Signal enhancement by diffusion: experimental observation of the "DESIRE―effect. Journal of Magnetic Resonance, 2004, 170, 252-256.	2.1	7
39	In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate. Scientific Reports, 2016, 6, 36080.	3.3	6
40	Spatial contribution of hippocampal BOLD activation in high-resolution fMRI. Scientific Reports, 2019, 9, 3152.	3.3	6
41	DLA based compressed sensing for high resolution MR microscopy of neuronal tissue. Journal of Magnetic Resonance, 2015, 259, 186-191.	2.1	5
42	Microscopic Magnetic Resonance Imaging. , 0, , .		5
43	Enhancing surface coil sensitive volume with hybridized electric dipoles at 17.2â€T. Journal of Magnetic Resonance, 2019, 307, 106567.	2.1	4
44	Hardware and Methods., 2006,, 123-139.		2
45	Magnetic Resonance Imaging (MRI) of Water Diffusion in 2-Hydroxyethyl Methacrylate (HEMA) Gels. Materials Research Society Symposia Proceedings, 2006, 930, 1.	0.1	2
46	Postâ€processing correction of magnetization transfer effects in FENSI perfusion MRI data. Magnetic Resonance in Medicine, 2011, 65, 457-462.	3.0	2
47	Contrast magnetic resonance imaging for measurement of cartilage glycosaminoglycan content in dogs: A pilot study. Veterinary and Comparative Orthopaedics and Traumatology, 2013, 26, 100-104.	0.5	2
48	Quantitative DLA-based compressed sensing for T1-weighted acquisitions. Journal of Magnetic Resonance, 2017, 281, 26-30.	2.1	2
49	PEAKIT: A Gaussian Process regression analysis tool for chemical exchange saturation transfer spectra. Journal of Magnetic Resonance, 2022, 334, 107122.	2.1	2
50	In vivo detection of carnosine and its derivatives using chemical exchange saturation transfer. Magnetic Resonance in Medicine, 2022, 88, 1314-1323.	3.0	2
51	Experimental demonstration of diffusion signal enhancement in 2D DESIRE images. Journal of Magnetic Resonance, 2012, 218, 44-48.	2.1	1
52	A mechanically tunable and efficient ceramic probe for MR-microscopy at 17 Tesla. AIP Conference Proceedings, 2017, , .	0.4	1
53	IVIM Models: Advantages, Disadvantages, and Analysis Pitfalls. , 2018, , 375-402.		1
54	Ultrafast CEST line scanning as a method to quantify mutarotation kinetics. Journal of Magnetic Resonance, 2022, 342, 107270.	2.1	1

#	Article	IF	CITATIONS
55	Quantification of microvascular cerebral blood flux and lateâ€stage tumor compartmentalization in 9L gliosarcoma using flow enhanced MRI. NMR in Biomedicine, 2013, 26, 699-708.	2.8	O
56	The time-dependent diffusivity in the abdominal ganglion of Aplysia californica: experiments and simulations. Biomedical Physics and Engineering Express, 2019, 5, 045036.	1.2	0
57	Efficient Probes for Ultra-high-field Magnetic Resonance Microscopy Based on Coupled Ceramic Resonators. , 2019, , .		O
58	Tunable all-dielectric RF-coils for magnetic resonance microscopy. , 2019, , .		0
59	Reply to Comments on "A Semi-Analytical Model of High-Permittivity Dielectric Ring Resonators for Magnetic Resonance Imaging― IEEE Transactions on Antennas and Propagation, 2022, 70, 3131-3131.	5.1	O
60	Localized NMR Velocity Measurements in Small Channels. , 0, , 177-196.		0