Patricia Groenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9247077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonality assessment and detection of clonal diversity in classic Hodgkin lymphoma by next-generation sequencing of immunoglobulin gene rearrangements. Modern Pathology, 2022, 35, 757-766.	5.5	11
2	Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sjögren's syndrome. Annals of the Rheumatic Diseases, 2022, 81, 644-652.	0.9	15
3	Next-Generation Sequencing-Based Clonality Detection of Immunoglobulin Gene Rearrangements in B-Cell Lymphoma. Methods in Molecular Biology, 2022, , 7-42.	0.9	8
4	Novel Approaches in Molecular Characterization of Classical Hodgkin Lymphoma. Cancers, 2022, 14, 3222.	3.7	5
5	Evaluation of a worldwide EQA scheme for complex clonality analysis of clinical lymphoproliferative cases demonstrates a learning effect. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 365-376.	2.8	2
6	Clonotypic Features of Rearranged Immunoglobulin Genes Yield Personalized Biomarkers for Minimal Residual Disease Monitoring in Multiple Myeloma. Clinical Chemistry, 2021, 67, 867-875.	3.2	12
7	Multiple Immunoglobulin κ Gene Rearrangements within a Single Clone Unraveled by Next-Generation Sequencing–Based Clonality Assessment. Journal of Molecular Diagnostics, 2021, 23, 1097-1104.	2.8	8
8	Next-Generation Sequencing–Based Clonality Assessment of Ig Gene Rearrangements. Journal of Molecular Diagnostics, 2021, 23, 1105-1115.	2.8	25
9	Validation of the EuroClonality-NGS DNA capture panel as an integrated genomic tool for lymphoproliferative disorders. Blood Advances, 2021, 5, 3188-3198.	5.2	2
10	A novel next generation sequencing approach to improve sarcoma diagnosis. Modern Pathology, 2020, 33, 1350-1359.	5.5	20
11	Memento for interprofessional learning. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 755-756.	2.8	1
12	High frequency of inactivating tetraspanin CD37 mutations in diffuse large B-cell lymphoma at immune-privileged sites. Blood, 2019, 134, 946-950.	1.4	18
13	Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia, 2019, 33, 2241-2253.	7.2	177
14	Clinical validation of a novel assay for the detection of diagnostic alterations in sarcomas. Annals of Oncology, 2019, 30, v703.	1.2	0
15	Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia, 2019, 33, 2254-2265.	7.2	70
16	Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia, 2019, 33, 2227-2240.	7.2	92
17	PCR GeneScan and Heteroduplex Analysis of Rearranged Immunoglobulin or T-Cell Receptor Genes for Clonality Diagnostics in Suspect Lymphoproliferations. Methods in Molecular Biology, 2019, 1956, 77-103.	0.9	6
18	Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 673-680.	2.8	24

#	Article	IF	CITATIONS
19	Prognostic significance of NAB2–STAT6 fusion variants and TERT promotor mutations in solitary fibrous tumors/hemangiopericytomas of the CNS: not (yet) clear. Acta Neuropathologica, 2019, 137, 679-682.	7.7	19
20	A New and Simple TRG Multiplex PCR Assay for Assessment of T ell Clonality: A Comparative Study from the EuroClonality Consortium. HemaSphere, 2019, 3, e255.	2.7	9
21	Diseaseâ€biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations. Journal of Pathology, 2019, 247, 416-421.	4.5	25
22	Euroclonality-NGS DNA Capture Panel for Integrated Analysis of IG/TR Rearrangements, Translocations, Copy Number and Sequence Variation in Lymphoproliferative Disorders. Blood, 2019, 134, 888-888.	1.4	4
23	Development of a Targeted Mass-Spectrometry Serum Assay To Quantify M-Protein in the Presence of Therapeutic Monoclonal Antibodies. Journal of Proteome Research, 2018, 17, 1326-1333.	3.7	32
24	ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics, 2017, 33, 435-437.	4.1	85
25	Recurrent mutations in genes involved in nuclear factorâ€₽B signalling in nodal marginal zone lymphoma—diagnostic and therapeutic implications. Histopathology, 2017, 70, 174-184.	2.9	21
26	High-Throughput Immunogenetics for Clinical and Research Applications in Immunohematology: Potential and Challenges. Journal of Immunology, 2017, 198, 3765-3774.	0.8	61
27	Copy number variation analysis and methylome profiling of a CNAQ-mutant primary meningeal melanocytic tumor and its liver metastasis. Experimental and Molecular Pathology, 2017, 102, 25-31.	2.1	15
28	Copy number variations as potential diagnostic and prognostic markers for CNS melanocytic neoplasms in neurocutaneous melanosis. Acta Neuropathologica, 2017, 133, 333-335.	7.7	3
29	Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma. Journal of Hematopathology, 2017, 10, 91-107.	0.4	45
30	Soft tissue angiofibroma: Clinicopathologic, immunohistochemical and molecular analysis of 14 cases. Genes Chromosomes and Cancer, 2017, 56, 750-757.	2.8	33
31	Pathways towards indolent B-cell lymphoma — Etiology and therapeutic strategies. Blood Reviews, 2017, 31, 426-435.	5.7	7
32	Molecular clonality assessment shows high performance to predict malignant B-cell non-Hodgkin's lymphoma using cytological smears. Journal of Clinical Pathology, 2016, 69, 1109-1115.	2.0	10
33	SF3B1 and EIF1AX mutations occur in primary leptomeningeal melanocytic neoplasms; yet another similarity to uveal melanomas. Acta Neuropathologica Communications, 2016, 4, 5.	5.2	35
34	Partial lack of BCL2 in follicular lymphoma: An unusual immunohistochemical staining pattern explained by ongoing BCL2 mutation. Pathology Research and Practice, 2016, 212, 148-150.	2.3	2
35	T-cell Landscape in a Primary Melanoma Predicts the Survival of Patients with Metastatic Disease after Their Treatment with Dendritic Cell Vaccines. Cancer Research, 2016, 76, 3496-3506.	0.9	33
36	Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond. Haematologica, 2016, 101, 1002-1009.	3.5	43

#	Article	IF	CITATIONS
37	How we do: optimizing bone marrow biopsy logistics for sign-out within 2Âdays. Journal of Hematopathology, 2016, 9, 67-71.	0.4	2
38	Clinical features of patients with nodal marginal zone lymphoma compared to follicular lymphoma: similar presentation, but differences in prognostic factors and rate of transformation. Leukemia and Lymphoma, 2016, 57, 1649-1656.	1.3	13
39	A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. Journal of Hematopathology, 2016, 9, 3-8.	0.4	7
40	Tetraspanin CD37 protects against the development of B cell lymphoma. Journal of Clinical Investigation, 2016, 126, 653-666.	8.2	47
41	Abstract A016: T cell landscape within primary melanoma as a predictive biomarker of survival after cancer vaccination in patients with metastatic disease. , 2016, , .		0
42	Identification of IG-clonality status as a pre-treatment predictor for mortality in patients with immunodeficiency-associated Epstein-Barr virus-related lymphoproliferative disorders. Haematologica, 2015, 100, e152-e154.	3.5	2
43	Whole-genome copy-number analysis identifies new leads for chromosomal aberrations involved in the oncogenesis and metastastic behavior of uveal melanomas. Melanoma Research, 2015, 25, 200-209.	1.2	15
44	Next generation sequencing in synovial sarcoma reveals novel gene mutations. Oncotarget, 2015, 6, 34680-34690.	1.8	45
45	NRAS-mutated melanocytic BAP1-associated intradermal tumor (MBAIT): a case report. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 466, 117-121.	2.8	10
46	Immunohistochemical differentiation between follicular lymphoma and nodal marginal zone lymphoma - combined performance of multiple markers. Haematologica, 2015, 100, e358-e360.	3.5	20
47	Mutations in G Protein Encoding Genes and Chromosomal Alterations in Primary Leptomeningeal Melanocytic Neoplasms. Pathology and Oncology Research, 2015, 21, 439-447.	1.9	34
48	Epstein–Barr Virus in Inflammatory Bowel Disease: The Spectrum of Intestinal Lymphoproliferative Disorders. Journal of Crohn's and Colitis, 2015, 9, 398-403.	1.3	70
49	Molecular Evidence for Antigen Drive in the Natural History of Mantle Cell Lymphoma. American Journal of Pathology, 2015, 185, 1740-1748.	3.8	13
50	Primary Melanocytic Tumors of the Central Nervous System: a Review with Focus on Molecular Aspects. Brain Pathology, 2015, 25, 209-226.	4.1	88
51	Immunoglobulin rearrangement analysis from multiple lesions in the same patient using nextâ€generation sequencing. Histopathology, 2015, 67, 843-858.	2.9	5
52	Unique Versus Common: Disease-Biased Immunoglobulin Gene Repertoires Along with Public Antigen Receptor Stereotypes in Marginal Zone B-Cell Lymphoproliferations. Blood, 2015, 126, 1479-1479.	1.4	2
53	Update on Molecular Pathology of Cutaneous Melanocytic Lesions: What is New in Diagnosis and Molecular Testing for Treatment?. Frontiers in Medicine, 2014, 1, 39.	2.6	23
54	Guidance for laboratories performing molecular pathology for cancer patients. Journal of Clinical Pathology, 2014, 67, 923-931.	2.0	169

#	Article	IF	CITATIONS
55	Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagnostic Pathology, 2014, 9, 131.	2.0	200
56	Solitary fibrous tumor – clinicopathologic, immunohistochemical and molecular analysis of 28 cases. Diagnostic Pathology, 2014, 9, 224.	2.0	107
57	Metastatic melanoma mimicking solitary fibrous tumor: report of two cases. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 247-251.	2.8	9
58	Next generation diagnostic molecular pathology: Critical appraisal of quality assurance in Europe. Molecular Oncology, 2014, 8, 830-839.	4.6	44
59	Sequential immunohistochemistry: a promising new tool for the pathology laboratory. Histopathology, 2014, 65, 651-657.	2.9	44
60	NRAS mutations are more prevalent than KIT mutations in melanoma of the female urogenital tract—A study of 24 cases from the Netherlands. Gynecologic Oncology, 2014, 134, 10-14.	1.4	35
61	Human secondary lymphoid organs typically contain polyclonally-activated proliferating regulatory T cells. Blood, 2013, 122, 2213-2223.	1.4	28
62	Guideline on the requirements of external quality assessment programs in molecular pathology. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 27-37.	2.8	70
63	Primary Melanoma of the CNS in Children Is Driven by Congenital Expression of Oncogenic <i>NRAS</i> in Melanocytes. Cancer Discovery, 2013, 3, 458-469.	9.4	61
64	Presence of <scp><i>C11orf95–MKL2</i></scp> fusion is a consistent finding in chondroid lipomas: a study of eight cases. Histopathology, 2013, 62, 925-930.	2.9	50
65	Application of Microfluidic Technology to the BIOMED-2 Protocol for Detection of B-Cell Clonality. Journal of Molecular Diagnostics, 2012, 14, 30-37.	2.8	21
66	â€~Big'-Insulin-Like Growth Factor–II Signaling Is an Autocrine Survival Pathway in Gastrointestinal Stromal Tumors. American Journal of Pathology, 2012, 181, 303-312.	3.8	14
67	Capillary electrophoresis single-strand conformation analysis (CE-SSCA) for clonality detection in lymphoproliferative disorders. Journal of Hematopathology, 2012, 5, 83-89.	0.4	2
68	The EuroClonality website: information, education and support on clonality testing. Journal of Hematopathology, 2012, 5, 99-103.	0.4	2
69	A practical approach to diagnostic Ig/TCR clonality evaluation in clinical pathology. Journal of Hematopathology, 2012, 5, 17-25.	0.4	12
70	Clonality testing: teamwork by pathologist and molecular biologist. Journal of Hematopathology, 2012, 5, 3-5.	0.4	0
71	Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood, 2011, 118, 3088-3095.	1.4	149

72 DNA Extraction from Formalin-Fixed Paraffin-Embedded Tissues (FFPE) (from Small Fragments of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
73	Preparing pathology for personalized medicine: possibilities for improvement of the pre-analytical phase. Histopathology, 2011, 59, 1-7.	2.9	44
74	High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. Journal of Hematopathology, 2011, 4, 189-197.	0.4	2
75	Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system. Acta Neuropathologica, 2010, 119, 317-323.	7.7	128
76	Improved discrimination of melanotic schwannoma from melanocytic lesions by combined morphological and GNAQ mutational analysis. Acta Neuropathologica, 2010, 120, 755-764.	7.7	60
77	Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 457, 309-317.	2.8	93
78	Protein profiling in pathology: Analysis and evaluation of 239 frozen tissue biopsies for diagnosis of Bâ€cell lymphomas. Proteomics - Clinical Applications, 2010, 4, 519-527.	1.6	9
79	Biomarkers as disease definition: Mantle cell lymphoma as an example. Proteomics - Clinical Applications, 2010, 4, 922-925.	1.6	4
80	A Multicenter Study to Validate the Reproducibility of MSI Testing With a Panel of 5 Quasimonomorphic Mononucleotide Repeats. Diagnostic Molecular Pathology, 2010, 19, 236-242.	2.1	35
81	High-resolution genomic profiling of pediatric lymphoblastic lymphomas reveals subtle differences with pediatric acute lymphoblastic leukemias in the B-lineage. Cancer Genetics and Cytogenetics, 2009, 191, 27-33.	1.0	30
82	Hypermutation in mantle cell lymphoma does not indicate a clinical or biological subentity. Modern Pathology, 2009, 22, 416-425.	5.5	27
83	Sequence-Based Evidence for Antigen Selection in Mantle Cell Lymphoma: Remarkable Immunoglobulin Gene Repertoire Biases, Stereotyped Antigen-Binding Sites and Recurrent Hypermutations in Certain Subsets Blood, 2009, 114, 1933-1933.	1.4	2
84	Pitfalls in TCR gene clonality testing: teaching cases. Journal of Hematopathology, 2008, 1, 97-109.	0.4	76
85	Integrated genomic and expression profiling in mantle cell lymphoma: identification of geneâ€dosage regulated candidate genes. British Journal of Haematology, 2008, 143, 210-221.	2.5	27
86	Bigenic heterozygosity and the development of steroid-resistant focal segmental glomerulosclerosis. Nephrology Dialysis Transplantation, 2008, 23, 3146-3151.	0.7	69
87	Promoter methylation of PARG1, a novel candidate tumor suppressor gene in mantle cell lymphomas. Haematologica, 2007, 92, 460-468.	3.5	31
88	Teaching molecular genetics: Chapter 3 – Proteomics in nephrology. Pediatric Nephrology, 2006, 21, 611-618.	1.7	6
89	Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas. Genes Chromosomes and Cancer, 2006, 45, 883-892.	2.8	22
90	Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood, 2005, 105, 1686-1693.	1.4	67

#	Article	IF	CITATIONS
91	Podocyte Changes after Induction of Acute Albuminuria in Mice by Anti-Aminopeptidase A mAb. Nephron Experimental Nephrology, 2003, 94, e85-e93.	2.2	17
92	Epitope Mapping of Monoclonal Antibodies Directed to Aminopeptidase A and Their Relevance for Albuminuria in Mice. Nephron Experimental Nephrology, 2003, 94, e25-e34.	2.2	2
93	Alternative Splicing Controls Myotonic Dystrophy Protein Kinase Structure, Enzymatic Activity, and Subcellular Localization. Molecular and Cellular Biology, 2003, 23, 5489-5501.	2.3	54
94	Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice. Nephrology Dialysis Transplantation, 2003, 18, 2524-2533.	0.7	30
95	Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Human Molecular Genetics, 2002, 11, 191-198.	2.9	250
96	Albuminuria in Mice after Injection of Antibodies against Aminopeptidase A. Journal of the American Society of Nephrology: JASN, 2001, 12, 2711-2720.	6.1	13
97	Expanding complexity in myotonic dystrophy. BioEssays, 1998, 20, 901-912.	2.5	74
98	Structure and Modifications of the Junior Chaperone alpha-Crystallin. From Lens Transparency to Molecular Pathology. FEBS Journal, 1994, 225, 1-19.	0.2	347
99	The amine-donor substrate specificity of tissue-type transglutaminase. Influence of amino acid residues flanking the amine-donor lysine residue. FEBS Journal, 1994, 220, 795-799.	0.2	33
100	Structure and modifications of the junior chaperone $\hat{l}\pm$ -crystallin. , 1994, , 165-183.		1
101	The carboxy-terminal lysine of alphaB-crystallin is an amine-donor substrate for tissue transglutaminase. FEBS Journal, 1992, 205, 671-674.	0.2	61