List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9245937/publications.pdf Version: 2024-02-01

MOSHE ODEN

#	Article	IF	CITATIONS
1	Pseudo-mutant P53 is a unique phenotype of <i>DNMT3A</i> -mutated pre-leukemia. Haematologica, 2022, 107, 2548-2561.	3.5	6
2	Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119644119.	7.1	8
3	Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nature Communications, 2022, 13, 2800.	12.8	21
4	<i>TP53</i> missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	57
5	The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature, 2020, 586, 133-138.	27.8	216
6	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
7	A Division of Labor between YAP and TAZ in Non–Small Cell Lung Cancer. Cancer Research, 2020, 80, 4145-4157.	0.9	38
8	Transcriptional profiling reveals a subset of human breast tumors that retain wt <i>TP53</i> but display mutant p53â€associated features. Molecular Oncology, 2020, 14, 1640-1652.	4.6	8
9	p53: not just a tumor suppressor. Journal of Molecular Cell Biology, 2019, 11, 539-543.	3.3	9
10	New insights into YAP/TAZ nucleoâ€cytoplasmic shuttling: new cancer therapeutic opportunities?. Molecular Oncology, 2019, 13, 1335-1341.	4.6	61
11	Early Loss of Histone H2B Monoubiquitylation Alters Chromatin Accessibility and Activates Key Immune Pathways That Facilitate Progression of Ovarian Cancer. Cancer Research, 2019, 79, 760-772.	0.9	38
12	TRRAP is essential for regulating the accumulation of mutant and wild-type p53 in lymphoma. Blood, 2018, 131, 2789-2802.	1.4	25
13	PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma. Oncogene, 2018, 37, 2213-2224.	5.9	36
14	Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene, 2018, 37, 1669-1684.	5.9	72
15	p53 shades of Hippo. Cell Death and Differentiation, 2018, 25, 81-92.	11.2	70
16	Functional characterization of the p53 "mutome― Molecular and Cellular Oncology, 2018, 5, e1511207.	0.7	4
17	A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Molecular Cell, 2018, 71, 178-190.e8.	9.7	177
18	Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models. Cell, 2018, 175, 171-185.e25.	28.9	104

#	Article	IF	CITATIONS
19	Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6410-6415.	7.1	81
20	LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Science Alliance, 2018, 1, e201800171.	2.8	26
21	RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death and Differentiation, 2017, 24, 694-704.	11.2	44
22	p53 is essential for DNA methylation homeostasis in naÃ⁻ve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes and Development, 2017, 31, 959-972.	5.9	48
23	Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E496-E505.	7.1	59
24	Tumor Suppression by p53: Bring in the Hippo!. Cancer Cell, 2017, 32, 397-399.	16.8	8
25	Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone. Nucleic Acids Research, 2017, 45, 12681-12699.	14.5	21
26	TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. Cell Death and Differentiation, 2017, 24, 132-143.	11.2	16
27	Targeting mutant p53 for cancer therapy. Aging, 2016, 8, 1159-1160.	3.1	24
28	The liverâ€specific microRNAâ€122*, the complementary strand of microRNAâ€122, acts as a tumor suppressor by modulating the p53/mouse double minute 2 homolog circuitry. Hepatology, 2016, 64, 1623-1636.	7.3	48
29	Genomic Alterations Observed in Colitis-Associated Cancers Are Distinct From Those Found in Sporadic Colorectal Cancers and Vary by Type of Inflammatory Bowel Disease. Gastroenterology, 2016, 151, 278-287.e6.	1.3	147
30	The Paradox of p53: What, How, and Why?. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026328.	6.2	65
31	p53 mutations promote proteasomal activity. Nature Cell Biology, 2016, 18, 833-835.	10.3	7
32	The Hippo pathway, p53 and cholesterol. Cell Cycle, 2016, 15, 2248-2255.	2.6	26
33	RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated Cancer. Cell Reports, 2016, 14, 1462-1476.	6.4	99
34	The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes and Development, 2016, 30, 786-797.	5.9	78
35	The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Seminars in Cancer Biology, 2016, 37-38, 36-50.	9.6	149
36	3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells. PLoS Genetics, 2016, 12, e1005879.	3.5	77

#	Article	IF	CITATIONS
37	Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget, 2016, 7, 11817-11837.	1.8	56
38	Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nature Protocols, 2015, 10, 605-618.	12.0	35
39	Down-regulation of LATS kinases alters p53 to promote cell migration. Genes and Development, 2015, 29, 2325-2330.	5.9	68
40	microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. Journal of Molecular Cell Biology, 2014, 6, 192-197.	3.3	54
41	Caught in the cross fire: p53 in inflammation. Carcinogenesis, 2014, 35, 1680-1690.	2.8	123
42	Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Research, 2014, 24, 1572-1583.	5.5	74
43	4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biology, 2014, 15, R69.	8.8	146
44	p53 and ribosome biogenesis stress: The essentials. FEBS Letters, 2014, 588, 2571-2579.	2.8	181
45	Writing and reading H2B monoubiquitylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 694-701.	1.9	115
46	Systematic Identification of Proteins Binding to Chromatin-Embedded Ubiquitylated H2B Reveals Recruitment of SWI/SNF to Regulate Transcription. Cell Reports, 2013, 4, 601-608.	6.4	82
47	Mutant p53 Prolongs NF-κB Activation and Promotes Chronic Inflammation and Inflammation-Associated Colorectal Cancer. Cancer Cell, 2013, 23, 634-646.	16.8	388
48	The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics, 2013, 29, 894-902.	4.1	30
49	Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20467-20472.	7.1	171
50	Cancer Cells Cue the p53 Response of Cancer-Associated Fibroblasts to Cisplatin. Cancer Research, 2012, 72, 5824-5832.	0.9	25
51	Nâ€Methylation of Isopeptide Bond as a Strategy to Resist Deubiquitinases. Angewandte Chemie - International Edition, 2012, 51, 11535-11539.	13.8	45
52	Importin 7 and Exportin 1 Link c-Myc and p53 to Regulation of Ribosomal Biogenesis. Molecular Cell, 2012, 45, 222-232.	9.7	118
53	RNF20 and USP44 Regulate Stem Cell Differentiation by Modulating H2B Monoubiquitylation. Molecular Cell, 2012, 46, 662-673.	9.7	187
54	ChIP-on-Chip Analysis of <i>In Vivo</i> Mutant p53 Binding To Selected Gene Promoters. OMICS A Journal of Integrative Biology, 2011, 15, 305-312.	2.0	36

#	Article	IF	CITATIONS
55	New plays in the p53 theater. Current Opinion in Genetics and Development, 2011, 21, 86-92.	3.3	99
56	Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Molecular Cell, 2011, 41, 529-542.	9.7	347
57	RNF20 Inhibits TFIIS-Facilitated Transcriptional Elongation to Suppress Pro-oncogenic Gene Expression. Molecular Cell, 2011, 42, 477-488.	9.7	87
58	RNF20–RNF40: A ubiquitinâ€driven link between gene expression and the DNA damage response. FEBS Letters, 2011, 585, 2795-2802.	2.8	67
59	DePICTing p53 Activation: A New Nucleolar Link to Cancer. Cancer Cell, 2011, 20, 283-284.	16.8	8
60	Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes and Cancer, 2011, 2, 466-474.	1.9	751
61	An Aurora A-Lats-Aurora B axis ensures proper chromosome segregation. Cell Cycle, 2011, 10, 3055-3055.	2.6	1
62	Repression of transposable-elements – a microRNA anti-cancer defense mechanism?. Trends in Genetics, 2010, 26, 253-259.	6.7	34
63	Modulation of the Vitamin D3 Response by Cancer-Associated Mutant p53. Cancer Cell, 2010, 17, 273-285.	16.8	228
64	p53 Status in Stromal Fibroblasts Modulates Tumor Growth in an SDF1-Dependent Manner. Cancer Research, 2010, 70, 9650-9658.	0.9	93
65	NFκB and p53: A life and death affair. Cell Cycle, 2010, 9, 1025-1030.	2.6	5
66	Involvement of stromal p53 in tumor-stroma interactions. Seminars in Cell and Developmental Biology, 2010, 21, 47-54.	5.0	38
67	Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001107-a001107.	5.5	621
68	NFκB and p53: A life and death affair. Cell Cycle, 2010, 9, 1027.	2.6	4
69	CDK9 directs H2B monoubiquitination and controls replicationâ€dependent histone mRNA 3′â€end processing. EMBO Reports, 2009, 10, 894-900.	4.5	142
70	The first 30 years of p53: growing ever more complex. Nature Reviews Cancer, 2009, 9, 749-758.	28.4	1,684
71	Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nature Cell Biology, 2008, 10, 483-488.	10.3	333
72	Mdm2 Regulates p53 mRNA Translation through Inhibitory Interactions with Ribosomal Protein L26. Molecular Cell, 2008, 32, 180-189.	9.7	210

#	Article	IF	CITATIONS
73	Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4838-4843.	7.1	122
74	The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes and Development, 2008, 22, 2664-2676.	5.9	240
75	Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 2008, 7, 1870-1879.	2.6	81
76	Mutant p53 Enhances Nuclear Factor κB Activation by Tumor Necrosis Factor α in Cancer Cells. Cancer Research, 2007, 67, 2396-2401.	0.9	178
77	The Wip1 Phosphatase Acts as a Gatekeeper in the p53-Mdm2 Autoregulatory Loop. Cancer Cell, 2007, 12, 342-354.	16.8	246
78	Combination of Imatinib with Cisplatin and Nutlin-3: Functional and Molecular Effects on Bcr-Abl Positive Cells Blood, 2007, 110, 2954-2954.	1.4	0
79	BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood, 2006, 107, 1599-1607.	1.4	39
80	p53 Attenuates Cancer Cell Migration and Invasion through Repression of SDF-1/CXCL12 Expression in Stromal Fibroblasts. Cancer Research, 2006, 66, 10671-10676.	0.9	135
81	A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes and Development, 2006, 20, 2687-2700.	5.9	245
82	BCL6 Is Regulated by p53 through a Response Element Frequently Disrupted in B-Cell Non-Hodgkin's Lymphoma Blood, 2005, 106, 158-158.	1.4	2
83	Transactivation of the <i>EGR1</i> Gene Contributes to Mutant p53 Gain of Function. Cancer Research, 2004, 64, 8318-8327.	0.9	122
84	Downregulation of β-catenin by p53 involves changes in the rate of β-catenin phosphorylation and Axin dynamics. Oncogene, 2004, 23, 444-4453.	5.9	89
85	The RING Domain of Mdm2 Mediates Histone Ubiquitylation and Transcriptional Repression. Molecular Cell, 2004, 16, 631-639.	9.7	178
86	Regulation of p53 by Mdm2. Molecular Cell, 2004, 13, 4-5.	9.7	47
87	Inhibition of p53 degradation by Mdm2 acetylation. FEBS Letters, 2004, 561, 195-201.	2.8	93
88	Repeated Application of Sequence-Specific SiRNA Molecules Leads to an Effective Downmodulation of All Clinically Relevant bcr-abl Gene Variants Blood, 2004, 104, 4319-4319.	1.4	1
89	The p53–Mdm2 module and the ubiquitin system. Seminars in Cancer Biology, 2003, 13, 49-58	9.6	665
90	Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene, 2003, 22, 5667-5676.	5.9	111

#	Article	IF	CITATIONS
91	Cell Cycle Regulation and p53 Activation by Protein Phosphatase 2Cα. Journal of Biological Chemistry, 2003, 278, 14299-14305.	3.4	68
92	Physical Interaction with Human Tumor-derived p53 Mutants Inhibits p63 Activities. Journal of Biological Chemistry, 2002, 277, 18817-18826.	3.4	203
93	DNA Damage-induced Translocation of the Werner Helicase Is Regulated by Acetylation. Journal of Biological Chemistry, 2002, 277, 50934-50940.	3.4	121
94	p53 Activation by Nitric Oxide Involves Down-regulation of Mdm2. Journal of Biological Chemistry, 2002, 277, 15697-15702.	3.4	76
95	The p53 and Mdm2 families in cancer. Current Opinion in Genetics and Development, 2002, 12, 53-59.	3.3	271
96	Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene, 2002, 21, 1299-1303.	5.9	431
97	Regulation of p53. Annals of the New York Academy of Sciences, 2002, 973, 374-383.	3.8	92
98	Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene, 2002, 21, 1299-1303.	5.9	5
99	Down-Regulation of β-Catenin by Activated p53. Molecular and Cellular Biology, 2001, 21, 6768-6781.	2.3	203
100	ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes and Development, 2001, 15, 1067-1077.	5.9	550
101	The loss of mdm2 induces p53 mediated apoptosis. Oncogene, 2000, 19, 1691-1697.	5.9	116
102	Unmasking of phosphorylation-sensitive epitopes on p53 and Mdm2 by a simple Western-phosphatase procedure. Oncogene, 2000, 19, 3213-3215.	5.9	40
103	Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene, 2000, 19, 5944-5950.	5.9	165
104	The Werner syndrome protein contributes to induction of p53 by DNA damage. FASEB Journal, 2000, 14, 2138-2140.	0.5	49
105	Opposing Effects of Ras on p53. Cell, 2000, 103, 321-330.	28.9	346
106	Mdm2: The Ups and Downs. Molecular Medicine, 1999, 5, 71-83.	4.4	176
107	c-Abl Neutralizes the Inhibitory Effect of Mdm2 on p53. Journal of Biological Chemistry, 1999, 274, 8371-8374.	3.4	89
108	Physical and Functional Interaction between p53 and the Werner's Syndrome Protein. Journal of Biological Chemistry, 1999, 274, 29463-29469.	3.4	170

#	Article	IF	CITATIONS
109	Interaction of c-Abl and p73 \hat{l}_{\pm} and their collaboration to induce apoptosis. Nature, 1999, 399, 809-813.	27.8	529
110	Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 1999, 18, 477-485.	5.9	411
111	Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene, 1999, 18, 3205-3212.	5.9	189
112	Regulation of the p53 Tumor Suppressor Protein. Journal of Biological Chemistry, 1999, 274, 36031-36034.	3.4	499
113	p53 and apoptosis. Seminars in Cancer Biology, 1998, 8, 359-368.	9.6	253
114	Teaming up to restrain cancer. Nature, 1998, 391, 233-234.	27.8	11
115	Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene, 1998, 17, 1923-1930.	5.9	98
116	Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1and results in apoptosis and tumor suppression. Nature Medicine, 1998, 4, 835-838.	30.7	179
117	Individual promoter and intron p53-binding motifs from the rat Cyclin G1 promoter region support transcriptional activation by p53 but do not show co-operative activation. FEBS Letters, 1998, 430, 171-175.	2.8	12
118	Modulation of Mdm2 Expression and p53-Induced Apoptosis in Immortalized Human Ovarian Granulosa Cells**This work was supported by grants from the Israel Academy of Sciences (to I.V. and A.A.), by the Israeli Ministry of Science (to A.A.), by the Leo and Julia Forchheimer Center of Molecular Genetics at the Weizmann Institute of Science (to A.A.) and by a Grant-in-Aid 0704424 from the Ministry of Education Science and Culture of Iapan (to EK, KH, and AA), Endocrinology 1998, 139, 4688-4700	2.8	61
119	Involvement of p21WAF1/Cip1, CDK4 and Rb in activin A mediated signaling leading to hepatoma cell growth inhibition. Oncogene, 1997, 15, 1705-1711.	5.9	70
120	Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene, 1997, 15, 2717-2725.	5.9	102
121	Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387, 296-299.	27.8	4,033
122	Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature, 1996, 382, 816-818.	27.8	329
123	A functional p53-responsive intronic promoter is contained within the humanmdm2gene. Nucleic Acids Research, 1995, 23, 2584-2592.	14.5	268
124	p53: the ultimate tumor suppressor gene?. FASEB Journal, 1992, 6, 3169-3176.	0.5	215
125	The involvement of oncogenes and tumor suppressor genes in the control of apoptosis. Cancer and Metastasis Reviews, 1992, 11, 141-148.	5.9	94
126	p53 Mutations: Gains or losses?. Journal of Cellular Biochemistry, 1991, 45, 22-29.	2.6	122

#	Article	IF	CITATIONS
127	Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature, 1986, 320, 182-185.	27.8	369
128	Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature, 1984, 312, 646-649.	27.8	768
129	A single gene and a pseudogene for the cellular tumour antigen p53. Nature, 1983, 306, 594-597.	27.8	219