
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9245006/publications.pdf Version: 2024-02-01

YANDING FU

#	Article	IF	CITATIONS
1	A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8387-8392.	7.1	472
2	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
3	Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1452-1457.	7.1	243
4	A ceratoâ€platanin protein SsCP1 targets plant PR1 and contributes to virulence of <i>Sclerotinia sclerotiorum</i> . New Phytologist, 2018, 217, 739-755.	7.3	211
5	Widespread Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes. Journal of Virology, 2010, 84, 11876-11887.	3.4	200
6	Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12205-12210.	7.1	198
7	A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants. PLoS Pathogens, 2016, 12, e1005435.	4.7	180
8	Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. Journal of General Virology, 2006, 87, 241-249.	2.9	159
9	Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12803-12808.	7.1	143
10	A Novel Partitivirus That Confers Hypovirulence on Plant Pathogenic Fungi. Journal of Virology, 2014, 88, 10120-10133.	3.4	133
11	Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Scientific Reports, 2015, 5, 15565.	3.3	117
12	A 2-kb Mycovirus Converts a Pathogenic Fungus into a Beneficial Endophyte for Brassica Protection and Yield Enhancement. Molecular Plant, 2020, 13, 1420-1433.	8.3	113
13	A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology, 2011, 418, 49-56.	2.4	111
14	Virome Characterization of a Collection of S. sclerotiorum from Australia. Frontiers in Microbiology, 2017, 8, 2540.	3.5	106
15	Novel Secretory Protein Ss-Caf1 of the Plant-Pathogenic Fungus <i>Sclerotinia sclerotiorum</i> Is Required for Host Penetration and Normal Sclerotial Development. Molecular Plant-Microbe Interactions, 2014, 27, 40-55.	2.6	105
16	Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 2008, 24, 909-915.	3.6	85
17	A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Research, 2015, 197, 127-136.	2.2	83
18	Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathogens, 2017, 13, e1006234.	4.7	81

#	Article	IF	CITATIONS
19	Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Frontiers in Microbiology, 2015, 6, 406.	3.5	70
20	Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum. Virology, 2014, 464-465, 450-459.	2.4	69
21	Dicer-Like Proteins Regulate Sexual Development via the Biogenesis of Perithecium-Specific MicroRNAs in a Plant Pathogenic Fungus Fusarium graminearum. Frontiers in Microbiology, 2018, 9, 818.	3.5	68
22	Integrated omics study of lipid droplets from Plasmodiophora brassicae. Scientific Reports, 2016, 6, 36965.	3.3	59
23	A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME Journal, 2020, 14, 3120-3135.	9.8	57
24	Interannual dynamics, diversity and evolution of the virome in <i>Sclerotinia sclerotiorum</i> from a single crop field. Virus Evolution, 2021, 7, veab032.	4.9	56
25	An effector of a necrotrophic fungal pathogen targets the calciumâ€sensing receptor in chloroplasts to inhibit host resistance. Molecular Plant Pathology, 2020, 21, 686-701.	4.2	55
26	Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS ONE, 2017, 12, e0185907.	2.5	53
27	Ss-Sl2, a Novel Cell Wall Protein with PAN Modules, Is Essential for Sclerotial Development and Cellular Integrity of Sclerotinia sclerotiorum. PLoS ONE, 2012, 7, e34962.	2.5	44
28	Arabidopsis Mutant bik1 Exhibits Strong Resistance to Plasmodiophora brassicae. Frontiers in Physiology, 2016, 7, 402.	2.8	44
29	Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 2016, 6, 24325.	3.3	41
30	Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus. Journal of Virology, 2015, 89, 8567-8579.	3.4	40
31	Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virology Journal, 2016, 13, 92.	3.4	40
32	A Single ssRNA Segment Encoding RdRp Is Sufficient for Replication, Infection, and Transmission of Ourmia-Like Virus in Fungi. Frontiers in Microbiology, 2020, 11, 379.	3.5	39
33	A <i>Ralstonia solanacearum</i> effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell, 2022, 34, 1666-1683.	6.6	39
34	The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response. Frontiers in Microbiology, 2015, 6, 1504.	3.5	38
35	Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Research, 2016, 219, 92-99.	2.2	37
36	A Novel Deltaflexivirus that Infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Viruses, 2018, 10, 295.	3.3	35

#	Article	IF	CITATIONS
37	Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed. Npj Biofilms and Microbiomes, 2020, 6, 45.	6.4	33
38	Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLoS Pathogens, 2021, 17, e1009823.	4.7	30
39	Molecular Characterization of a Novel Positive-Sense, Single-Stranded RNA Mycovirus Infecting the Plant Pathogenic Fungus Sclerotinia sclerotiorum. Viruses, 2015, 7, 2470-2484.	3.3	28
40	Two alphapartitiviruses co-infecting a single isolate of the plant pathogenic fungus Rhizoctonia solani. Archives of Virology, 2018, 163, 515-520.	2.1	28
41	The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. International Journal of Molecular Sciences, 2020, 21, 603.	4.1	25
42	Discovery of Two Mycoviruses by High-Throughput Sequencing and Assembly of Mycovirus-Derived Small Silencing RNAs From a Hypovirulent Strain of Sclerotinia sclerotiorum. Frontiers in Microbiology, 2019, 10, 1415.	3.5	21
43	Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. Journal of Fungi (Basel, Switzerland), 2021, 7, 493.	3.5	20
44	A HOPS protein, CmVps39, is required for vacuolar morphology, autophagy, growth, conidiogenesis and mycoparasitic functions of <i>Coniothyrium minitans</i> . Environmental Microbiology, 2016, 18, 3785-3797.	3.8	19
45	Fungicidal Actions and Resistance Mechanisms of Prochloraz to <i>Penicillium digitatum</i> . Plant Disease, 2021, 105, 408-415.	1.4	19
46	Molecular Characterization of the First Alternavirus Identified in Fusarium oxysporum. Viruses, 2021, 13, 2026.	3.3	18
47	Functional Analysis of the Melanin-Associated Gene CmMR1 in Coniothyrium minitans. Frontiers in Microbiology, 2018, 9, 2658.	3.5	17
48	Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. Plant Biotechnology Journal, 2021, 19, 2349-2361.	8.3	17
49	Two distant helicases in one mycovirus: evidence of horizontal gene transfer between mycoviruses, coronaviruses and other nidoviruses. Virus Evolution, 2021, 7, veab043.	4.9	17
50	Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. Journal of Environmental Management, 2020, 259, 109857.	7.8	16
51	Genomic organization of a novel victorivirus from the rice blast fungus Magnaporthe oryzae. Archives of Virology, 2015, 160, 2907-2910.	2.1	15
52	Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Rhizoctonia oryzae-sativae. Archives of Virology, 2017, 162, 1409-1412.	2.1	15
53	A Novel RNA Virus Related to Sobemoviruses Confers Hypovirulence on the Phytopathogenic Fungus Sclerotinia sclerotiorum. Viruses, 2019, 11, 759.	3.3	15
54	Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microbial Genomics, 2020, 6, .	2.0	15

#	Article	IF	CITATIONS
55	A "footprint―of plant carbon fixation cycle functions during the development of a heterotrophic fungus. Scientific Reports, 2015, 5, 12952.	3.3	14
56	Identification of Lasiodiplodia pseudotheobromae Causing Fruit Rot of Citrus in China. Plants, 2021, 10, 202.	3.5	14
57	Isolation and evaluation of the biocontrol potential of <i>Talaromyces</i> spp. against rice sheath blight guided by soil microbiome. Environmental Microbiology, 2021, 23, 5946-5961.	3.8	13
58	Codon Usage Provides Insights into the Adaptive Evolution of Mycoviruses in Their Associated Fungi Host. International Journal of Molecular Sciences, 2022, 23, 7441.	4.1	13
59	Uninterrupted Expression of CmSIT1 in a Sclerotial Parasite Coniothyrium minitans Leads to Reduced Growth and Enhanced Antifungal Ability. Frontiers in Microbiology, 2017, 8, 2208.	3.5	12
60	Early Transcriptional Response to DNA Virus Infection in Sclerotinia sclerotiorum. Viruses, 2019, 11, 278.	3.3	12
61	Four Novel Botourmiaviruses Co-Infecting an Isolate of the Rice Blast Fungus Magnaporthe oryzae. Viruses, 2020, 12, 1383.	3.3	11
62	Genome Characterization and Phylogenetic Analysis of a Novel Endornavirus That Infects Fungal Pathogen Sclerotinia sclerotiorum. Viruses, 2022, 14, 456.	3.3	10
63	Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis. Journal of Genetics and Genomics, 2022, 49, 796-809.	3.9	10
64	New insights into reovirus evolution: implications from a newly characterized mycoreovirus. Journal of General Virology, 2017, 98, 1132-1141.	2.9	9
65	MAPKK Inhibitor U0126 Inhibits <i>Plasmodiophora brassicae</i> Development. Phytopathology, 2018, 108, 711-720.	2.2	8
66	Sclerotinia sclerotiorumÂSsCut1 Modulates Virulence and Cutinase Activity. Journal of Fungi (Basel,) Tj ETQq0 C) 0 rgBT /C	verlock 10 Tf
67	Proto-oncogenes in a eukaryotic unicellular organism play essential roles in plasmodial growth in host cells. BMC Genomics, 2018, 19, 881.	2.8	6
68	A novel antisense long nonâ€coding <scp>RNA</scp> participates in asexual and sexual reproduction by regulating the expression of <scp><i>GzmetE</i></scp> in <scp><i>Fusarium graminearum</i></scp> . Environmental Microbiology, 2021, 23, 4939-4955.	3.8	6
69	Deciphering Bacterial Community of the Fallow and Paddy Soil Focusing on Possible Biocontrol Agents. Agronomy, 2022, 12, 431.	3.0	6
70	CmAim24 Is Essential for Mitochondrial Morphology, Conidiogenesis, and Mycoparasitism in <i>Coniothyrium minitans</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	5
71	lncRsp1 , a long noncoding RNA, influences Fgsp1 expression and sexual reproduction in Fusarium graminearum. Molecular Plant Pathology, 2021, , .	4.2	5
72	Mycoviromic Analysis Unveils Complex Virus Composition in a Hypovirulent Strain of Sclerotinia sclerotiorum. Journal of Fungi (Basel, Switzerland), 2022, 8, 649.	3.5	5

#	Article	IF	CITATIONS
73	Host Transcriptional Response of Sclerotinia sclerotiorum Induced by the Mycoparasite Coniothyrium minitans. Frontiers in Microbiology, 2020, 11, 183.	3.5	4
74	Characterization of a novel botoulivirus isolated from the phytopathogenic fungus Sclerotinia sclerotiorum. Archives of Virology, 2021, 166, 2859-2863.	2.1	4
75	Pyrimethanil Sensitivity and Resistance Mechanisms in <i>Penicillium digitatum</i> . Plant Disease, 2021, 105, 1758-1764.	1.4	3
76	Characterization of a novel RNA virus from the phytopathogenic fungus Leptosphaeria biglobosa related to members of the genus Mitovirus. Archives of Virology, 2019, 164, 913-916.	2.1	2
77	Characterization of a newly identified RNA segment derived from the genome of Sclerotinia sclerotiorum reovirus 1. Archives of Virology, 2022, 167, 603-606.	2.1	2
78	Fusarivirus accessory helicases present an evolutionary link for viruses infecting plants and fungi. Virologica Sinica, 2022, 37, 427-436.	3.0	2
79	A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Archives of Virology, 2022, 167, 213-217.	2.1	1
80	Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum. Pesticide Biochemistry and Physiology, 2022, 184, 105130.	3.6	1