
Mary E Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9244788/publications.pdf Version: 2024-02-01

MADY F RYDNE

#	Article	IF	CITATIONS
1	SAW homeodomain transcription factors regulate initiation of leaf margin serrations. Journal of Experimental Botany, 2021, 72, 1738-1747.	4.8	4
2	Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 2020, 53, 73-79.	7.1	34
3	Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic <i>Brachypodium distachyon</i> lines overexpressing endogenous <i><scp>RSL</scp></i> genes. New Phytologist, 2018, 217, 1654-1666.	7.3	68
4	Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants. Frontiers in Plant Science, 2015, 6, 1102.	3.6	12
5	Ribosomal Protein RPL27a Promotes Female Gametophyte Development in a Dose-Dependent Manner Â. Plant Physiology, 2014, 165, 1133-1143.	4.8	34
6	How do â€~housekeeping' genes control organogenesis?—unexpected new findings on the role of housekeeping genes in cell and organ differentiation. Journal of Plant Research, 2013, 126, 3-15.	2.4	31
7	<i>MORE SPIKELETS1</i> Is Required for Spikelet Fate in the Inflorescence of Brachypodium Â. Plant Physiology, 2013, 161, 1291-1302.	4.8	70
8	The Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning. Journal of Experimental Botany, 2012, 63, 5233-5243.	4.8	29
9	Making leaves. Current Opinion in Plant Biology, 2012, 15, 24-30.	7.1	60
10	Ribosomal protein L27a is required for growth and patterning in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 65, 269-281.	5.7	93
11	Involvement of ribosomal protein RPL27a in meristem activity and organ development. Plant Signaling and Behavior, 2011, 6, 712-714.	2.4	16
12	Perspectives on leaf dorsoventral polarity. Journal of Plant Research, 2010, 123, 281-290.	2.4	42
13	A role for the ribosome in development. Trends in Plant Science, 2009, 14, 512-519.	8.8	262
14	<i>RID1</i> , encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12915-12920.	7.1	207
15	Three <i>PIGCYBACK</i> genes that specifically influence leaf patterning encode ribosomal proteins. Development (Cambridge), 2008, 135, 1315-1324.	2.5	144
16	Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway. Current Biology, 2006, 16, 933-938.	3.9	340
17	Shoot Meristem Function and Leaf Polarity: The Role of Class III HD–ZIP Genes. PLoS Genetics, 2006, 2, e89.	3.5	114
18	Networks in leaf development. Current Opinion in Plant Biology, 2005, 8, 59-66.	7.1	91

Mary E Byrne

#	Article	IF	CITATIONS
19	Plant stem cells: divergent pathways and common themes in shoots and roots. Current Opinion in Genetics and Development, 2003, 13, 551-557.	3.3	46
20	Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development (Cambridge), 2003, 130, 3941-3950.	2.5	187
21	Developmental genetics of the angiosperm leaf. Advances in Botanical Research, 2002, 38, 191-234.	1.1	12
22	<i>ASYMMETRIC LEAVES1</i> reveals <i>knox</i> gene redundancy in <i>Arabidopsis</i> . Development (Cambridge), 2002, 129, 1957-1965.	2.5	345
23	ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development (Cambridge), 2002, 129, 1957-65.	2.5	170
24	Development of leaf shape. Current Opinion in Plant Biology, 2001, 4, 38-43.	7.1	76
25	Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408, 967-971.	27.8	716
26	Opportunities and Challenges Grow from <i>Arabidopsis</i>Genome Sequencing . Genome Research, 1998, 8, 83-85.	5.5	5
27	Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene, 1993, 136, 13-25.	2.2	58
28	4′,4′' Adenyltransferase activity on conjugative plasmids isolated from Staphylococcus aureus is encoded on an integrated copy of pUB110. Plasmid, 1991, 25, 70-75.	1.4	42
29	Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene, 1989, 81, 361-367.	2.2	162