
Frederic Michon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9242871/publications.pdf Version: 2024-02-01

FREDERIC MICHON

#	Article	IF	CITATIONS
1	Sox2+ Stem Cells Contribute to All Epithelial Lineages of the Tooth via Sfrp5+ Progenitors. Developmental Cell, 2012, 23, 317-328.	3.1	203
2	Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development (Cambridge), 2013, 140, 1424-1432.	1.2	148
3	Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Developmental Biology, 2010, 340, 355-368.	0.9	102
4	BMP2 and BMP7 play antagonistic roles in feather induction. Development (Cambridge), 2008, 135, 2797-2805.	1.2	88
5	Identification and Validation of Human Papillomavirus Encoded microRNAs. PLoS ONE, 2013, 8, e70202.	1.1	61
6	<i>Sox2</i> and <i>Lef-1</i> interact with <i>Pitx2</i> to regulate incisor development and stem cell renewal. Development (Cambridge), 2016, 143, 4115-4126.	1.2	58
7	The different steps of skin formation in vertebrates International Journal of Developmental Biology, 2004, 48, 107-115.	0.3	56
8	Expression of MicroRNAs in the Stem Cell Niche of the Adult Mouse Incisor. PLoS ONE, 2011, 6, e24536.	1.1	34
9	Plasticity within the niche ensures the maintenance of a <i>Sox2</i> + stem cell population in the mouse incisor. Development (Cambridge), 2018, 145, .	1.2	28
10	The vertebrate corneal epithelium: From early specification to constant renewal. Developmental Dynamics, 2014, 243, 1226-1241.	0.8	27
11	Mesenchymal Wnt/β-Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells, 2015, 33, 1670-1681.	1.4	26
12	What is the biological basis of pattern formation of skin lesions?. Experimental Dermatology, 2006, 15, 547-549.	1.4	25
13	An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Frontiers in Physiology, 2014, 5, 324.	1.3	25
14	Tooth evolution and dental defects: From genetic regulation network to microâ€RNA fineâ€ŧuning. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 763-769.	1.6	24
15	Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation. Frontiers in Physiology, 2017, 8, 739.	1.3	24
16	Dermal condensation formation in the chick embryo: Requirement for integrin engagement and subsequent stabilization by a possible Notch/integrin interaction. Developmental Dynamics, 2007, 236, 755-768.	0.8	22
17	The Dynamic Interest in Topics within the Biomedical Scientific Community. PLoS ONE, 2009, 4, e6544.	1.1	22
18	Lin-28 Regulates Oogenesis and Muscle Formation in Drosophila melanogaster. PLoS ONE, 2014, 9, e101141.	1.1	21

Frederic Michon

#	Article	IF	CITATIONS
19	Sox21 Regulates Anapc10 Expression and Determines the Fate of Ectodermal Organ. IScience, 2020, 23, 101329.	1.9	20
20	<i>Bmi1+</i> Progenitor Cell Dynamics in Murine Cornea During Homeostasis and Wound Healing. Stem Cells, 2018, 36, 562-573.	1.4	15
21	Ectodysplasin-A signaling is a key integrator in the lacrimal gland – cornea feedback loop. Development (Cambridge), 2019, 146, .	1.2	14
22	Corneal Epithelial Abrasion with Ocular Burr As a Model for Cornea Wound Healing. Journal of Visualized Experiments, 2018, , .	0.2	11
23	Multicolor strategies for investigating clonal expansion and tissue plasticity. Cellular and Molecular Life Sciences, 2022, 79, 141.	2.4	8
24	Analysis of Tissue Interactions in Ectodermal Organ Culture. Methods in Molecular Biology, 2012, 945, 401-416.	0.4	7
25	Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Frontiers in Physiology, 2019, 10, 249.	1.3	7
26	Unilateral zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Scientific Reports, 2022, 12, 161.	1.6	7
27	Establishment of crown–root domain borders in mouse incisor. Gene Expression Patterns, 2013, 13, 255-264.	0.3	4
28	Zebrafish Corneal Wound Healing: From Abrasion to Wound Closure Imaging Analysis. Journal of Visualized Experiments, 2022, , .	0.2	2
29	Viewpoint 4. Experimental Dermatology, 2006, 15, 559-564.	1.4	0
30	Data Mining Based Analysis of Genomic Location Shifts of Conserved Annotated miRNA Genes gives Preliminary Insights on Molecular Network Evolution. , 2013, , .		0
31	Sox2 is necessary for the Cervical Loop formation and incisor renewal. Mechanisms of Development, 2017, 145, S170-S171.	1.7	0
32	Tooth bioengineering from single cell suspensions. MethodsX, 2019, 6, 2429-2438.	0.7	0