Grace Y Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9241794/publications.pdf Version: 2024-02-01

CDACE V SUN

#	Article	IF	CITATIONS
1	Long-Term Effects of Low-Intensity Blast Non-Inertial Brain Injury on Anxiety-Like Behaviors in Mice: Home-Cage Monitoring Assessments. Neurotrauma Reports, 2022, 3, 27-38.	1.4	4
2	Bidirectional Responses of Eight Neuroinflammation-Related Transcriptional Factors to 64 Flavonoids in Astrocytes with Transposable Insulated Signaling Pathway Reporters. ACS Chemical Neuroscience, 2022, 13, 613-623.	3.5	5
3	Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radical Biology and Medicine, 2022, 185, 1-5.	2.9	12
4	Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules, 2022, 27, 3607.	3.8	9
5	Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription. NeuroMolecular Medicine, 2021, 23, 199-210.	3.4	2
6	Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. NeuroMolecular Medicine, 2021, 23, 86-98.	3.4	52
7	Docosahexaenoic Acid (DHA) Supplementation Alters Phospholipid Species and Lipid Peroxidation Products in Adult Mouse Brain, Heart, and Plasma. NeuroMolecular Medicine, 2021, 23, 118-129.	3.4	3
8	Glial Cell Line-Derived Neurotrophic Factor and Focal Ischemic Stroke. Neurochemical Research, 2021, 46, 2638-2650.	3.3	10
9	Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells, 2021, 10, 2963.	4.1	25
10	Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Molecular Neurobiology, 2020, 57, 1085-1098.	4.0	18
11	Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury. NeuroMolecular Medicine, 2020, 22, 278-292.	3.4	17
12	Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. International Journal of Molecular Sciences, 2020, 21, 4097.	4.1	36
13	Quantitative Proteomics Reveals Docosahexaenoic Acid-Mediated Neuroprotective Effects in Lipopolysaccharide-Stimulated Microglial Cells. Journal of Proteome Research, 2020, 19, 2236-2246.	3.7	11
14	Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration (Review). Experimental and Therapeutic Medicine, 2020, 19, 1554-1559.	1.8	11
15	Cytosolic Phospholipase A2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Molecular Neurobiology, 2019, 56, 3222-3234.	4.0	12
16	Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Frontiers in Neurology, 2019, 10, 642.	2.4	53
17	Maternal Dietary Docosahexaenoic Acid Alters Lipid Peroxidation Products and (n-3)/(n-6) Fatty Acid Balance in Offspring Mice. Metabolites, 2019, 9, 40.	2.9	14
18	Quercetin Potentiates Docosahexaenoic Acid to Suppress Lipopolysaccharide-induced Oxidative/Inflammatory Responses, Alter Lipid Peroxidation Products, and Enhance the Adaptive Stress Pathways in BV-2 Microglial Cells. International Journal of Molecular Sciences, 2019, 20, 932.	4.1	18

#	Article	IF	CITATIONS
19	Azelnidipine Attenuates the Oxidative and NFκB Pathways in Amyloid-β-Stimulated Cerebral Endothelial Cells. ACS Chemical Neuroscience, 2019, 10, 209-215.	3.5	8
20	From Analysis of Ischemic Mouse Brain Proteome to Identification of Human Serum Clusterin as a Potential Biomarker for Severity of Acute Ischemic Stroke. Translational Stroke Research, 2019, 10, 546-556.	4.2	20
21	Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 3-13.	2.2	172
22	Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-I³ Transcription. Molecular Neurobiology, 2018, 55, 5425-5438.	4.0	20
23	Unveiling anti-oxidative and anti-inflammatory effects of docosahexaenoic acid and its lipid peroxidation product on lipopolysaccharide-stimulated BV-2 microglial cells. Journal of Neuroinflammation, 2018, 15, 202.	7.2	52
24	TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE, 2017, 12, e0170346.	2.5	88
25	Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6. NeuroMolecular Medicine, 2016, 18, 274-282.	3.4	30
26	Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells. NeuroMolecular Medicine, 2016, 18, 241-252.	3.4	61
27	Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis?. NeuroMolecular Medicine, 2016, 18, 483-486.	3.4	4
28	Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochemistry International, 2016, 97, 49-56.	3.8	35
29	Nutraceuticals in Neurodegeneration and Aging. NeuroMolecular Medicine, 2016, 18, 239-240.	3.4	3
30	Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. Scientific Reports, 2016, 6, 35323.	3.3	18
31	Protective Effects of AGE and Its Components on Neuroinflammation and Neurodegeneration. NeuroMolecular Medicine, 2016, 18, 474-482.	3.4	32
32	Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons. NeuroMolecular Medicine, 2016, 18, 441-452.	3.4	11
33	Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2. NeuroMolecular Medicine, 2016, 18, 415-425.	3.4	15
34	An Investigation into the Immunomodulatory Activities of Sutherlandia frutescens in Healthy Mice. PLoS ONE, 2016, 11, e0160994.	2.5	1
35	Beneficial Effects of Dietary EGCG and Voluntary Exercise on Behavior in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2015, 44, 561-572.	2.6	114
36	Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. International Immunopharmacology, 2015, 29, 254-262.	3.8	13

#	Article	IF	CITATIONS
37	Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 2015, 12, 199.	7.2	79
38	Two-Dimensional Zymography Differentiates Gelatinase Isoforms in Stimulated Microglial Cells and in Brain Tissues of Acute Brain Injuries. PLoS ONE, 2015, 10, e0123852.	2.5	10
39	Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 2015, 128, 30-38.	4.3	36
40	Immuno-stimulatory activity of a polysaccharide-enriched fraction of Sutherlandia frutescens occurs by the toll-like receptor-4 signaling pathway. Journal of Ethnopharmacology, 2015, 172, 247-253.	4.1	39
41	Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1. PLoS ONE, 2015, 10, e0141509.	2.5	128
42	Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells. PLoS ONE, 2014, 9, e113531.	2.5	24
43	Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells. ASN Neuro, 2014, 6, 175909141455494.	2.7	24
44	Nanoparticle-emitted light attenuates amyloid-β-induced superoxide and inflammation in astrocytes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 15-17.	3.3	22
45	Role of Cytosolic Phospholipase A2 in Oxidative and Inflammatory Signaling Pathways in Different Cell Types in the Central Nervous System. Molecular Neurobiology, 2014, 50, 6-14.	4.0	71
46	Cellular Membrane Fluidity in Amyloid Precursor Protein Processing. Molecular Neurobiology, 2014, 50, 119-129.	4.0	34
47	NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells. Journal of Neuroinflammation, 2014, 11, 17.	7.2	26
48	Proteomic Quantification and Site-Mapping of <i>S</i> -Nitrosylated Proteins Using Isobaric iodoTMT Reagents. Journal of Proteome Research, 2014, 13, 3200-3211.	3.7	104
49	Subchronic apocynin treatment attenuates methamphetamine-induced dopamine release and hyperactivity in rats. Life Sciences, 2014, 98, 6-11.	4.3	15
50	Sutherlandia frutescens Ethanol Extracts Inhibit Oxidative Stress and Inflammatory Responses in Neurons and Microglial Cells. PLoS ONE, 2014, 9, e89748.	2.5	23
51	Oligomeric Amyloid-β Peptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface. Central Asian Journal of Global Health, 2014, 3, 150.	0.6	0
52	Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation, 2013, 10, 15.	7.2	73
53	Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents. Neuroscience Letters, 2013, 554, 53-58.	2.1	17
54	Antiâ€inflammatory activities of Lessertia frutescens (Sutherlandia) extract in murine macrophages. FASEB Journal, 2013, 27, 348.2.	0.5	0

#	Article	IF	CITATIONS
55	Integrating Cytosolic Phospholipase A2 with Oxidative/Nitrosative Signaling Pathways in Neurons: A Novel Therapeutic Strategy for AD. Molecular Neurobiology, 2012, 46, 85-95.	4.0	40
56	Foreword. Molecular Neurobiology, 2012, 46, 1-2.	4.0	4
57	Stroke angiogenesis and phytochemicals. Frontiers in Bioscience - Scholar, 2012, S4, 599-610.	2.1	28
58	The neuroprotective effects of apocynin. Frontiers in Bioscience - Elite, 2012, E4, 2183.	1.8	31
59	Botanical Phenolics and Neurodegeneration. Oxidative Stress and Disease, 2011, , 315-332.	0.3	2
60	Phospholipases A ₂ and neural membrane dynamics: implications for Alzheimer's disease. Journal of Neurochemistry, 2011, 116, 813-819.	3.9	81
61	Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 2011, 8, 121.	7.2	136
62	Phospholipases A2 and Inflammatory Responses in the Central Nervous System. NeuroMolecular Medicine, 2010, 12, 133-148.	3.4	169
63	Targeting NADPH Oxidase and Phospholipases A2 in Alzheimer's Disease. Molecular Neurobiology, 2010, 41, 73-86.	4.0	38
64	Resveratrol as a Therapeutic Agent for Neurodegenerative Diseases. Molecular Neurobiology, 2010, 41, 375-383.	4.0	283
65	Preface. Molecular Neurobiology, 2010, 41, 53-54.	4.0	3
66	Altered microglial copper homeostasis in a mouse model of Alzheimer's disease. Journal of Neurochemistry, 2010, 114, 1630-1638.	3.9	78
67	Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-Î ² Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (-)-Epigallocatechin-3-Gallate. ASN Neuro, 2010, 3, AN20100025.	2.7	81
68	Neuroprotective effects of a nanocrystal formulation of sPLA2 inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Research, 2009, 1285, 188-195.	2.2	22
69	Oxidative and Inflammatory Pathways in Parkinson's Disease. Neurochemical Research, 2009, 34, 55-65.	3.3	280
70	Oral administration of grape polyphenol extract ameliorates cerebral ischemia/reperfusion-induced neuronal damage and behavioral deficits in gerbils: comparison of pre- and post-ischemic administrationâ~†. Journal of Nutritional Biochemistry, 2009, 20, 369-377.	4.2	28
71	Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochemistry International, 2009, 55, 362-368.	3.8	41
72	NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochemical Journal, 2009, 421, 201-210.	3.7	39

#	Article	IF	CITATIONS
73	Botanical Phenolics and Brain Health. NeuroMolecular Medicine, 2008, 10, 259-274.	3.4	189
74	Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A ₂ in cortical neurons. Journal of Neurochemistry, 2008, 106, 45-55.	3.9	249
75	Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine, 2008, 15, 496-503.	5.3	60
76	Synthesis of Diapocynin. Journal of Chemical Education, 2008, 85, 411.	2.3	13
77	Cyclooxygenase-2 inhibition improves amyloid-l²-mediated suppression of memory and synaptic plasticity. Brain, 2008, 131, 651-664.	7.6	208
78	The roles of NADPH oxidase and phospholipases A2in oxidative and inflammatory responses in neurodegenerative diseases. Journal of Neurochemistry, 2007, 103, 070611013409004-???.	3.9	86
79	Cytotoxicity of paraquat in microglial cells: Involvement of PKCδ- and ERK1/2-dependent NADPH oxidase. Brain Research, 2007, 1167, 129-139.	2.2	89
80	Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease. Journal of Neuroinflammation, 2006, 3, 28.	7.2	128
81	Apocynin protects against global cerebral ischemia–reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research, 2006, 1090, 182-189.	2.2	216
82	Phospholipases A2 Mediate Amyloid-beta Peptide-Induced Mitochondrial Dysfunction. Journal of Neuroscience, 2006, 26, 11111-11119.	3.6	109
83	Effect of microglia cell activation on neuronal cells in coculture. FASEB Journal, 2006, 20, A980.	0.5	Ο
84	Kainic Acid-Mediated Excitotoxicity as a Model for Neurodegeneration. Molecular Neurobiology, 2005, 31, 003-016.	4.0	306
85	Phospholipase A ₂ in Astrocytes: Responses to Oxidative Stress, Inflammation, and G Protein-Coupled Receptor Agonists. Molecular Neurobiology, 2005, 31, 027-042.	4.0	101
86	Polyphenols in Cerebral Ischemia: Novel Targets for Neuroprotection. Molecular Neurobiology, 2005, 31, 135-148.	4.0	140
87	Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 2005, 82, 138-148.	2.9	218
88	Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Molecular Nutrition and Food Research, 2005, 49, 443-451.	3.3	32
89	Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Journal of Cell Science, 2005, 118, 3695-3703.	2.0	216
90	Distinct signaling pathways for induction of type II NOS by IFNÎ ³ and LPS in BV-2 microglial cells. Neurochemistry International, 2005, 47, 298-307.	3.8	67

#	Article	IF	CITATIONS
91	Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. Journal of Neurochemistry, 2004, 90, 637-645.	3.9	91
92	Resveratrol Protects Against Neurotoxicity Induced by Kainic Acid. Neurochemical Research, 2004, 29, 2105-2112.	3.3	113
93	Phospholipase A2 in the central nervous system. Journal of Lipid Research, 2004, 45, 205-213.	4.2	348
94	Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radical Biology and Medicine, 2003, 34, 1531-1543.	2.9	71
95	Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 2002, 958, 439-447.	2.2	465
96	The "French paradox―and beyond: neuroprotective effects of polyphenols1,2 1Guest editor: Arthur Cederbaum 2This article is part of a series of reviews on "Alcohol, Oxidative Stress and Cell Injury.― The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 314-318.	2.9	295
97	Role of PKC and MAPK in cytosolic PLA ₂ phosphorylation and arachadonic acid release in primary murine astrocytes. Journal of Neurochemistry, 2002, 83, 259-270.	3.9	115
98	Grape Polyphenols Inhibit Chronic Ethanol-Induced COX-2 mRNA Expression in Rat Brain. Alcoholism: Clinical and Experimental Research, 2002, 26, 352-357.	2.4	31
99	Grape polyphenols inhibit chronic ethanol-induced COX-2 mRNA expression in rat brain. Alcoholism: Clinical and Experimental Research, 2002, 26, 352-7.	2.4	8
100	Effect of exercise and medium-chain fatty acids on postprandial lipemia. Journal of Applied Physiology, 2001, 90, 1239-1246.	2.5	44
101	Ethanol and oxidative mechanisms in the brain. Journal of Biomedical Science, 2001, 8, 37-43.	7.0	109
102	Ethanol inhibits cytokine-induced iNOS and sPLA2 in immortalized astrocytes: Evidence for posttranscriptional site of ethanol action. Journal of Biomedical Science, 2001, 8, 126-133.	7.0	18
103	Oxidized lipoproteins, beta amyloid peptides and alzheimer's disease. Neurotoxicity Research, 2001, 3, 167-178.	2.7	22
104	Ethanol Effects on Nitric Oxide Production in Cerebral Pial Cultures. Alcoholism: Clinical and Experimental Research, 2001, 25, 612-618.	2.4	19
105	Ethanol and Lipid Metabolic Signaling. Alcoholism: Clinical and Experimental Research, 2001, 25, 33S-39S.	2.4	22
106	Ethanol and Oxidative Stress. Alcoholism: Clinical and Experimental Research, 2001, 25, 237S-243S.	2.4	93
107	Ethanol and Oxidative Stress. Alcoholism: Clinical and Experimental Research, 2001, 25, 237S-243S.	2.4	48
108	Ethanol and Oxidative Mechanisms in the Brain. Journal of Biomedical Science, 2001, 8, 37-43.	7.0	8

#	Article	IF	CITATIONS
109	Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC). , 2000, 25, 613-619.		20
110	Dietary Supplementation of Grape Polyphenols to Rats Ameliorates Chronic Ethanol-Induced Changes in Hepatic Morphology without Altering Changes in Hepatic Lipids. Journal of Nutrition, 1999, 129, 1814-1819.	2.9	29
111	Cytokine Induction of iNOS and sPLA2 in Immortalized Astrocytes (DITNC): Response to Genistein and Pyrrolidine Dithiocarbamate. Journal of Interferon and Cytokine Research, 1999, 19, 121-127.	1.2	57
112	Chronic Ethanol and Iron Administration on Iron Content, Neuronal Nitric Oxide Synthase, and Superoxide Dismutase in Rat Cerebellum. Alcoholism: Clinical and Experimental Research, 1999, 23, 702-707.	2.4	29
113	Studies on the cytosolic phospholipase A2 in immortalized astrocytes (DITNC) revealed new properties of the calcium ionophore, A23187. Neurochemical Research, 1999, 24, 1285-1291.	3.3	19
114	Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). Journal of Molecular Neuroscience, 1999, 12, 89-99.	2.3	20
115	Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. NeuroReport, 1999, 10, 93-96.	1.2	53
116	Chronic Ethanol and Iron Administration on Iron Content, Neuronal Nitric Oxide Synthase, and Superoxide Dismutase in Rat Cerebellum. Alcoholism: Clinical and Experimental Research, 1999, 23, 702.	2.4	4
117	Effects of ischemic tolerance on mRNA levels of IP3R1, beta-actin, and neuron-specific enolase in hippocampal CA1 area of the gerbil brain. Neurochemical Research, 1998, 23, 539-542.	3.3	13
118	Prenatal Ethanol Exposure Selectively Reduces the mRNA Encoding α-1 Thyroid Hormone Receptor in Fetal Rat Brain. Alcoholism: Clinical and Experimental Research, 1998, 22, 2111-2117.	2.4	20
119	Changes in IP3R1 and SERCA2b mRNA levels in the gerbil brain after chronic ethanol administration and transient cerebral ischemia-reperfusion. Molecular Brain Research, 1998, 56, 22-28.	2.3	14
120	Chronic Ethanol Inhibits Inositol Metabolism in Specific Brain Regions. Alcoholism: Clinical and Experimental Research, 1997, 21, 716-720.	2.4	9
121	Effects of IL-1 beta on receptor-mediated poly-phosphoinositide signaling pathway in immortalized astrocytes (DITNC). Neurochemical Research, 1997, 22, 1309-1315.	3.3	6
122	An esterification protocol for cis-parinaric acid-determined lipid peroxidation in immune cells1,2. Lipids, 1997, 32, 219-226.	1.7	21
123	Membrane lipid metabolism and phospholipase activity in insect Spodoptera frugiperda 9 ovarian cells. Lipids, 1997, 32, 481-487.	1.7	13
124	Chronic Ethanol Inhibits Inositol Metabolism in Specific Brain Regions. Alcoholism: Clinical and Experimental Research, 1997, 21, 716.	2.4	1
125	Effects of Ethanol on Phosphorylation of Lipids in Rat Synaptic Plasma Membranes. Alcoholism: Clinical and Experimental Research, 1996, 20, 1335-1339.	2.4	6
126	Chronic ethanol on mRNA levels of IP3R1, IP3 3-kinase and mGluR1 in mouse Purkinje neurons. NeuroReport, 1996, 7, 2115-2118.	1.2	34

#	Article	IF	CITATIONS
127	In situ hybridization of rnRNA expression for IP3 receptor and IP3-3-kinase in rat brain after transient focal cerebral ischemia. Molecular Brain Research, 1995, 32, 252-260.	2.3	29
128	Free Fatty Acids, Neutral Glycerides, and Phosphoglycerides in Transient Focal Cerebral Ischemia. Journal of Neurochemistry, 1995, 64, 1688-1695.	3.9	44
129	Phosphorylation of lipids in rat primary glial cells and immortalized astrocytes (DITNC). Lipids, 1994, 29, 385-390.	1.7	4
130	Signal Transduction Pathways Coupled to a P2UReceptor in Neuroblastoma × Glioma (NG108-15) Cells. Journal of Neurochemistry, 1993, 60, 1115-1125.	3.9	60
131	Effects of Acute Ethanol Administration on Polyphosphoinositide Turnover and Levels of Inositol 1,4,5-Trisphosphate in Mouse Cerebrum and Cerebellum. Alcoholism: Clinical and Experimental Research, 1993, 17, 401-405.	2.4	10
132	Fatty acids in the lipids ofDrosophila heads: Effects of visual mutants, carotenoid deprivation and dietary fatty acids. Lipids, 1993, 28, 345-350.	1.7	29
133	Phospholipids inDrosophila heads: Effects of visual mutants and phototransduction manipulations. Lipids, 1993, 28, 23-28.	1.7	15
134	In Utero Ethanol Exposure Decreases the Biosynthesis of Phosphatidylserine in Rat Pup Cerebrum. Alcoholism: Clinical and Experimental Research, 1992, 16, 432-435.	2.4	9
135	Lithium Effects on Inositol Phospholipids and Inositol Phosphates: Evaluation of an In Vivo Model for Assessing Polyphosphoinositide Turnover in Brain. Journal of Neurochemistry, 1992, 58, 290-297.	3.9	32
136	Decapitation ischemia-induced release of free fatty acids in mouse brain. Molecular and Chemical Neuropathology, 1992, 17, 39-50.	1.0	24
137	Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: A comparison between endogenous Vs exogenous substrate pools. Lipids, 1990, 25, 273-277.	1.7	4
138	Deacylation-Reacylation of Arachidonoyl Groups in Cerebral Phospholipids. Annals of the New York Academy of Sciences, 1989, 559, 37-55.	3.8	84
139	Arachidonic acid uptake by phospholipids and triacylglycerols of rat brain subcellular membranes. Lipids, 1988, 23, 942-947.	1.7	19
140	Effects of Ethanol on Arachidonic Acid Incorporation Into Lipids of a Plasma Membrane Fraction Isolated from Brain Cerebral Cortex. Alcoholism: Clinical and Experimental Research, 1988, 12, 795-800.	2.4	15
141	Effects of Cerebral Ischemia on [3H]Inositol Lipids and [3H]Inositol Phosphates of Gerbil Brain and Subcellular Fractions. Journal of Neurochemistry, 1987, 48, 943-948.	3.9	33
142	Effects of Chronic Ethanol Administration on Rat Brain Phospholipid Metabolism. Journal of Neurochemistry, 1987, 48, 974-980.	3.9	27
143	Metabolism of lysophosphatidylcholine by swine platelets. Lipids, 1985, 20, 133-140.	1.7	5
144	Effects of ischemia on free fatty acids and diacylglycerols in developing rat brain. International Journal of Developmental Neuroscience, 1985, 3, 51-56.	1.6	16

#	Article	IF	CITATIONS
145	Ethanol and Membrane Lipids. Alcoholism: Clinical and Experimental Research, 1985, 9, 164-180.	2.4	215
146	On the Status of Lysolecithin in Rat Cerebral Cortex During Ischemia. Journal of Neurochemistry, 1984, 43, 1081-1086.	3.9	46
147	Partial purification and properties of long-chain acyl-CoA hydrolase from rat brain cytosol. Neurochemical Research, 1984, 9, 1571-1591.	3.3	16
148	Detergent Effects on the Phosphatidylinositol-Specific Phospholipase C in Rat Brain Synaptosomes. Journal of Neurochemistry, 1983, 41, 1735-1743.	3.9	24
149	Serum Albumin Washing Specifically Enhances Arachidonate Incorporation into Synaptosomal Phosphatidylinositols. Journal of Neurochemistry, 1983, 40, 84-90.	3.9	19
150	Phosphoglycerides and their acyl group composition in myelin and microsomes of rat spinal cord during development. International Journal of Developmental Neuroscience, 1983, 1, 59-64.	1.6	7
151	Degradation of Arachidonoyl-Labeled Phosphatidylinositols by Brain Synaptosomes. Journal of Neurochemistry, 1981, 36, 355-362.	3.9	25
152	Effects of acute administration of chlorinated water on liver lipids. Lipids, 1981, 16, 336-340.	1.7	6
153	The Kinetic Properties of Oleoyl-CoA:1-Acyl-sn-glycero-3-phosphocholine O-Acyltransferase from Mouse-Brain Microsomes. FEBS Journal, 1980, 109, 201-206.	0.2	15
154	In vivo desaturation of [1-14C]stearate in the developing mouse brain. Journal of Neurochemistry, 1979, 33, 351-354.	3.9	2
155	METABOLISM OF ARACHIDONOYL PHOSPHOGLYCERIDES IN MOUSE BRAIN SUBCELLULAR FRACTIONS. Journal of Neurochemistry, 1979, 32, 1053-1059.	3.9	48
156	On the membrane phospholipids and their acyl group profiles of adrenal gland. Lipids, 1979, 14, 918-924.	1.7	22
157	ACYL GROUP COMPOSITION OF METABOLICALLY ACTIVE LIPIDS IN BRAIN: VARIANCES AMONG SUBCELLULAR FRACTIONS AND DURING POSTNATAL DEVELOPMENT. Journal of Neurochemistry, 1978, 31, 1043-1047.	3.9	23
158	Vitamin E, Antioxidants and Lipid Peroxidation in Experimental Atherosclerosis of Rabbits. Journal of Nutrition, 1978, 108, 1858-1867.	2.9	99
159	Metabolism of arachidonate and stearate injected simultaneously into the mouse brain. Lipids, 1977, 12, 661-665.	1.7	28
160	THE EFFECTS OF CARBAMYLCHOLINE ON INCORPORATION IN VIVO OF [1-14C]ARACHIDONIC ACID INTO GLYCEROLIPIDS OF MOUSE BRAIN. Journal of Neurochemistry, 1977, 29, 1059-1063.	3.9	10
161	Effect of chronic electrical stimulation on incorporation of [1-14C]oleate into glycerolipids of mouse brain. Journal of Neurochemistry, 1977, 28, 1385-1387.	3.9	3
162	INCORPORATION OF [1-14C]OLEIC ACID AND [1-14C]ARACHIDONIC ACID INTO LIPIDS IN THE SUBCELLULAR FRACTIONS OF MOUSE BRAIN. Journal of Neurochemistry, 1976, 27, 87-92.	3.9	37

#	Article	IF	CITATIONS
163	Changes in phospholipids and acyl group composition of rat mammary gland during pregnant, lactating, and post-weaning periods. Lipids, 1976, 11, 322-327.	1.7	4
164	Levels of brain lipids in white matter from undernourished Sinclair (S-1) miniature swine. Journal of Neurochemistry, 1972, 19, 909-912.	3.9	5
165	The fatty acid and aldehyde composition of the major phospholipids of mouse brain. Lipids, 1968, 3, 79-83.	1.7	83