Marco Ruella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9241085/publications.pdf Version: 2024-02-01

	109321	53230
7,947	35	85
citations	h-index	g-index
123	123	8335
docs citations	times ranked	citing authors
		U U
	7,947 citations 123 docs citations	7,94735citationsh-index123123docs citationstimes ranked

#	Article	IF	CITATIONS
1	Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood, 2022, 139, 1026-1038.	1.4	67
2	Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discovery, 2022, 3, 103-115.	5.0	31
3	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	30.7	117
4	Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st–2nd, 2021. Journal of Translational Medicine, 2022, 20, .	4.4	4
5	Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nature Communications, 2022, 13, .	12.8	21
6	Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas. Haematologica, 2021, 106, 1705-1713.	3.5	34
7	CARâ€T TREK through the lymphoma universe, to boldly go where no other therapy has gone before. British Journal of Haematology, 2021, 193, 449-465.	2.5	17
8	Five-Year Outcomes for Refractory B-Cell Lymphomas with CAR T-Cell Therapy. New England Journal of Medicine, 2021, 384, 673-674.	27.0	178
9	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 379-393.	27.6	128
10	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
11	Strategy to prevent epitope masking in CAR.CD19+ B-cell leukemia blasts. , 2021, 9, e001514.		10
12	Acute Kidney Injury Following Chimeric Antigen Receptor T-Cell Therapy for B-Cell Lymphoma in a Kidney Transplant Recipient. Kidney Medicine, 2021, 3, 665-668.	2.0	10
13	Overcoming Intrinsic Resistance of Cancer Cells to CAR T-Cell Killing. Clinical Cancer Research, 2021, 27, 6298-6306.	7.0	37
14	18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Following Chimeric Antigen Receptor T-cell Therapy in Large B-cell Lymphoma. Molecular Imaging and Biology, 2021, 23, 818-826.	2.6	8
15	The current landscape of single-cell transcriptomics for cancer immunotherapy. Journal of Experimental Medicine, 2021, 218, .	8.5	35
16	Adoptive T-cell therapy for Hodgkin lymphoma. Blood Advances, 2021, 5, 4291-4302.	5.2	11
17	Born to survive: how cancer cells resist CAR T cell therapy. Journal of Hematology and Oncology, 2021, 14, 199.	17.0	59
18	The Intestinal Microbiota Correlates with Response and Toxicity after CAR T Cell Therapy in Patients with B-Cell Malignancies. Blood, 2021, 138, 253-253.	1.4	2

Marco Ruella

#	Article	IF	CITATIONS
19	Repurposing Bi-Specific Chimeric Antigen Receptor (CAR) Approach to Enhance CAR T Cell Activity Against Low Antigen Density Tumors. Blood, 2021, 138, 1727-1727.	1.4	7
20	Safety and Efficacy of Sars-Cov-2 Vaccines in Hodgkin Lymphoma Patients Receiving PD-1 Inhibitors. Blood, 2021, 138, 2445-2445.	1.4	1
21	Gut Microbiota Tuning Promotes Tumor-Associated Antigen Cross Presentation and Enhances CAR T Antitumor Effects. Blood, 2021, 138, 163-163.	1.4	1
22	A Novel Cotinine-Based System for Switchable Chimeric Antigen Receptor T Cell Immunotherapy. Blood, 2021, 138, 4803-4803.	1.4	0
23	Antigen Glycosylation Is a Central Regulator of CAR T Cell Efficacy. Blood, 2021, 138, 1721-1721.	1.4	2
24	Bendamustine Is a Safe and Effective Regimen for Lymphodepletion before Tisagenlecleucel in Patients with Large B-Cell Lymphomas. Blood, 2021, 138, 1438-1438.	1.4	4
25	A Novel Anti-CD19 Chimeric Antigen Receptor T Cell Product Targeting a Membrane-Proximal Domain of CD19. Blood, 2021, 138, 2798-2798.	1.4	0
26	CART22-65s Co-Administered with huCART19 in Adult Patients with Relapsed or Refractory ALL. Blood, 2021, 138, 469-469.	1.4	7
27	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	28.9	160
28	A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor–positive cells. Blood, 2020, 135, 505-509.	1.4	25
29	The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Frontiers in Immunology, 2020, 11, 888.	4.8	45
30	Human chimeric antigen receptor macrophages for cancer immunotherapy. Nature Biotechnology, 2020, 38, 947-953.	17.5	692
31	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	9.4	184
32	The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy, 2020, 22, 57-69.	0.7	70
33	R-CHOP Versus R-Bendamustine with or without Rituximab Maintenance in Newly Diagnosed Follicular Lymphoma Patients with High SUV at Baseline PET. Blood, 2020, 136, 39-40.	1.4	3
34	Repurposing Bi-Specific Chimeric Antigen Receptor (CAR) Approach to Enhance CAR T Cell Activity Against Low Antigen Density Tumors. Blood, 2020, 136, 30-30.	1.4	2
35	Dynamic Changes in Gene Mutational Landscape With Preservation of Core Mutations in Mantle Cell Lymphoma Cells. Frontiers in Oncology, 2019, 9, 568.	2.8	7
36	Influence of Donor and Recipient Gender on Telomere Maintenance after Umbilical Cord Blood Cell Transplantation: A Study by the Gruppo Italiano Trapianto Di Midollo Osseo. Biology of Blood and Marrow Transplantation, 2019, 25, 1387-1394.	2.0	2

#	Article	IF	CITATIONS
37	Beat pediatric ALL MRD: CD28 CAR T and transplant. Blood, 2019, 134, 2333-2335.	1.4	5
38	Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	21.8	263
39	Identification and Validation of Predictive Biomarkers to CD19- and BCMA-Specific CAR T-Cell Responses in CAR T-Cell Precursors. Blood, 2019, 134, 622-622.	1.4	15
40	Hospitalization Patterns with Commercial CAR T-Cell Therapy: A Single Institution Experience. Blood, 2019, 134, 3240-3240.	1.4	11
41	Single Chain Variable Fragment Linker Length Regulates CAR Biology and T Cell Efficacy. Blood, 2019, 134, 247-247.	1.4	11
42	A Characterization of Bridging Therapies Leading up to Commercial CAR T-Cell Therapy. Blood, 2019, 134, 4108-4108.	1.4	14
43	Use of Bendamustine for Lymphodepletion before Tisagenlecleucel (anti-CD19 CAR T cells) for Aggressive B-Cell Lymphomas. Blood, 2019, 134, 1606-1606.	1.4	12
44	Building upon the success of CART19: chimeric antigen receptor T cells for hematologic malignancies. Leukemia and Lymphoma, 2018, 59, 2040-2055.	1.3	10
45	Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3, .	5.0	191
46	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
47	Novel Immunotherapies for T Cell Lymphoma and Leukemia. Current Hematologic Malignancy Reports, 2018, 13, 494-506.	2.3	21
48	Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget, 2018, 9, 25764-25780.	1.8	61
49	Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans. Molecular Therapy, 2018, 26, 1401-1403.	8.2	14
50	Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell, 2018, 173, 1439-1453.e19.	28.9	323
51	Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017,) Tj ETG	Qq1 1 0.7	84314 rgBT
52	CAR T Cell Cytotoxicity Is Dependent on Death Receptor-Driven Apoptosis. Blood, 2018, 132, 698-698.	1.4	1
53	Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. Blood, 2018, 132, 4198-4198.	1.4	71
54	Primary Mediastinal B-Cell Lymphoma: Evaluation of Clinicopathologic Diagnosis Compared to Gene Expression Based Diagnosis in a Clinical Trial with CD30+ B-Cell Lymphomas. Blood, 2018, 132, 2959-2959.	1.4	0

#	Article	IF	CITATIONS
55	Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood, 2017, 129, 2395-2407.	1.4	148
56	Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discovery, 2017, 7, 1154-1167.	9.4	149
57	Ruxolitinib Prevents Cytokine Release Syndrome after Car T-Cell Therapy Without Impairing the Anti-Tumor Effect in a Xenograft Model. Biology of Blood and Marrow Transplantation, 2017, 23, S19-S20.	2.0	17
58	Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer. Current Hematologic Malignancy Reports, 2017, 12, 522-529.	2.3	60
59	Next-Generation Chimeric Antigen Receptor T-Cell Therapy: Going off the Shelf. BioDrugs, 2017, 31, 473-481.	4.6	105
60	Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms. Leukemia, 2017, 31, 246-248.	7.2	106
61	Abstract 4575: Chimeric antigen receptor macrophages (CARMA) for adoptive cellular immunotherapy of solid tumors. Cancer Research, 2017, 77, 4575-4575.	0.9	10
62	Clinical Efficacy of Anti-CD22 Chimeric Antigen Receptor T Cells for B-Cell Acute Lymphoblastic Leukemia Is Correlated with the Length of the Scfv Linker and Can be Predicted Using Xenograft Models. Blood, 2017, 130, 807-807.	1.4	4
63	Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. Journal of Clinical Investigation, 2016, 126, 3814-3826.	8.2	472
64	Walking a tightrope: clinical use of ibrutinib in mantle cell lymphoma in the elderly. Hematology American Society of Hematology Education Program, 2016, 2016, 432-436.	2.5	3
65	273. Genome Editing Using CRISPR-Cas9 to Increase the Therapeutic Index of Antigen-Specific Immunotherapy in Acute Myeloid Leukemia. Molecular Therapy, 2016, 24, S108.	8.2	4
66	Identification of PD1 and TIM3 As Checkpoints That Limit Chimeric Antigen Receptor T Cell Efficacy in Leukemia. Biology of Blood and Marrow Transplantation, 2016, 22, S19-S21.	2.0	26
67	lbrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
68	Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies. Computational and Structural Biotechnology Journal, 2016, 14, 357-362.	4.1	229
69	Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Current Hematologic Malignancy Reports, 2016, 11, 368-384.	2.3	60
70	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clinical Cancer Research, 2016, 22, 2684-2696.	7.0	157
71	Addition of Rituximab to Involved-Field Radiation Therapy Prolongs Progression-free Survival in Stage I-II Follicular Lymphoma: Results of a Multicenter Study. International Journal of Radiation Oncology Biology Physics, 2016, 94, 783-791.	0.8	35
72	Engineering Resistance to Antigen-Specific Immunotherapy in Normal Hematopoietic Stem Cells By Gene Editing to Enable Targeting of Acute Myeloid Leukemia. Blood, 2016, 128, 1000-1000.	1.4	3

#	Article	IF	CITATIONS
73	Kinase Inhibitor Ibrutinib Prevents Cytokine-Release Syndrome after Anti-CD19 Chimeric Antigen Receptor T Cells (CART) for B Cell Neoplasms. Blood, 2016, 128, 2159-2159.	1.4	8
74	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
75	Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Blood, 2016, 128, 43-43.	1.4	9
76	Ruxolitinib Prevents Cytokine Release Syndrome after CART Cell Therapy without Impairing the Anti-Tumor Effect in a Xenograft Model. Blood, 2016, 128, 652-652.	1.4	31
77	Leukemia Stem Cells Are Characterized By CLEC12A Expression and Chemotherapy Refractoriness That Can be Overcome By Targeting with Chimeric Antigen Receptor T Cells. Blood, 2016, 128, 766-766.	1.4	9
78	Smart CARS: optimized development of a chimeric antigen receptor (CAR) T cell targeting epidermal growth factor receptor variant III (EGFRvIII) for glioblastoma. Annals of Translational Medicine, 2016, 4, 13.	1.7	7
79	Bendamustine and rituximab for the treatment of relapsed indolent and mantle cell lymphoma: when timing of a study matters. Translational Cancer Research, 2016, 5, S590-S594.	1.0	0
80	Treatment of leukemia antigen-loss relapses occurring after CD19-targeted immunotherapies by combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells. , 2015, 3, .		2
81	CD33 Directed Chimeric Antigen Receptor T Cell Therapy As a Novel Preparative Regimen Prior to Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia. Biology of Blood and Marrow Transplantation, 2015, 21, S25-S26.	2.0	5
82	How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert Opinion on Biological Therapy, 2015, 15, 761-766.	3.1	24
83	CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia, 2015, 29, 1637-1647.	7.2	343
84	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
85	Combination of Anti-CD123 and Anti-CD19 Chimeric Antigen Receptor T Cells for the Treatment and Prevention of Antigen-Loss Relapses Occurring after CD19-Targeted Immunotherapies. Blood, 2015, 126, 2523-2523.	1.4	7
86	Efficient Termination of CD123-Redirected Chimeric Antigen Receptor T Cells for Acute Myeloid Leukemia to Mitigate Toxicity. Blood, 2015, 126, 565-565.	1.4	14
87	Identification of PD1 and TIM3 As Checkpoints That Limit Chimeric Antigen Receptor T Cell Efficacy in Leukemia. Blood, 2015, 126, 852-852.	1.4	13
88	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Engraftment and Antitumor Responses Against Mantle Cell Lymphoma. Blood, 2015, 126, 704-704.	1.4	0
89	A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia vera. British Journal of Haematology, 2014, 167, 541-546.	2.5	47
90	Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies. Cancer Research, 2014, 74, 6383-6389.	0.9	38

#	Article	IF	CITATIONS
91	Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood, 2014, 123, 2343-2354.	1.4	396
92	Adoptive immunotherapy for cancer. Immunological Reviews, 2014, 257, 14-38.	6.0	119
93	Pregnancy complications predict thrombotic events in young women with essential thrombocythemia. American Journal of Hematology, 2014, 89, 306-309.	4.1	50
94	Novel Chimeric Antigen Receptor T Cells for the Treatment of Hodgkin Lymphoma. Blood, 2014, 124, 806-806.	1.4	10
95	Novel Chimeric Antigen Receptor T Cells for the Treatment of CD19-Negative Relapses Occurring after CD19-Targeted Immunotherapies. Blood, 2014, 124, 966-966.	1.4	4
96	Rate of Primary Refractory Disease in B and T-Cell Non-Hodgkin's Lymphoma: Correlation with Long-Term Survival. PLoS ONE, 2014, 9, e106745.	2.5	18
97	Rituximab-based pre-emptive treatment of molecular relapse in follicular and mantle cell lymphoma. Annals of Hematology, 2013, 92, 1503-1511.	1.8	19
98	Lymphocyte transformation and autoimmune disorders. Autoimmunity Reviews, 2013, 12, 802-813.	5.8	26
99	Multiple courses of G-CSF in patients with decompensated cirrhosis: consistent mobilization of immature cells expressing hepatocyte markers and exploratory clinical evaluation. Hepatology International, 2013, 7, 1075-1083.	4.2	21
100	Telomere shortening in Ph-negative chronic myeloproliferative neoplasms: A biological marker of polycythemia vera and myelofibrosis, regardless ofÂhydroxycarbamide therapy. Experimental Hematology, 2013, 41, 627-634.	0.4	22
101	Bone marrow-derived cell mobilization by G-CSF to enhance osseointegration of bone substitute in high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 237-248.	4.2	18
102	Long-Term Results of Autologous Hematopoietic Stem-Cell Transplantation After High-Dose ⁹⁰ Y-Ibritumomab Tiuxetan for Patients With Poor-Risk Non-Hodgkin Lymphoma Not Eligible for High-Dose BEAM. Journal of Clinical Oncology, 2013, 31, 2974-2976.	1.6	14
103	Haploidentical cellular therapy in elderly patients with acute myeloid leukemia: Description of its use in high risk patients. American Journal of Hematology, 2013, 88, 720-721.	4.1	6
104	Anti-CD123 Chimeric Antigen Receptor T Cells (CART-123) Provide A Novel Myeloablative Conditioning Regimen That Eradicates Human Acute Myeloid Leukemia In Preclinical Models. Blood, 2013, 122, 143-143.	1.4	9
105	Use of the novel thrombopoietin receptor-agonist romiplostim, in combination with steroids and immunoglobulins for the increase of platelets prior to splenectomy, in refractory immune thrombocytopenia. Blood Coagulation and Fibrinolysis, 2012, 23, 331-334.	1.0	6
106	A short course of granulocyte–colony-stimulating factor to accelerate wound repair in patients undergoing surgery for sacrococcygeal pilonidal cyst: proof of concept. Cytotherapy, 2012, 14, 1101-1109.	0.7	4
107	Long Telomere Length of White Blood Cells Following Umbilical Cord Blood Transplant (UCBT): Is Hematopoiesis Younger in UCBT Recipients Compared to Healthy Age-Matched Controls?. Blood, 2012, 120, 4094-4094.	1.4	0
108	The aging effect of chemotherapy on cultured human mesenchymal stem cells. Experimental Hematology, 2011, 39, 1171-1181.	0.4	59

#	Article	IF	CITATIONS
109	Myeloablative doses of yttriumâ€90â€ibritumomab tiuxetan and the risk of secondary myelodysplasia/acute myelogenous leukemia. Cancer, 2011, 117, 5074-5084.	4.1	23
110	Rituximab Followed by Involved Fields Radiotherapy (IF-RT) in Stage I-II Follicular Lymphoma (FL): Long Term Results,. Blood, 2011, 118, 3699-3699.	1.4	1
111	Early and Permanent Telomere Shortening in Bone Marrow-Derived Cells Following Chemotherapy: A Parallel Study In Vivo in Lymphoma Patients and In Vitro in Cultured Mesenchymal Stem Cells. Blood, 2011, 118, 1620-1620.	1.4	0
112	Comparative assessment of telomere length before and after hematopoietic SCT: role of grafted cells in determining post-transplant telomere status. Bone Marrow Transplantation, 2010, 45, 505-512.	2.4	14
113	The Risk of Secondary Myelodysplastic Syndrome/Acute Leukemia Following High-Dose Yttrium-90 Ibritumomab Tiuxetan Is Analogous to That Observed Following High-Dose Chemotherapy: a Matched-Pair Analysis In Non-Hodgkin Lymphoma Patients Blood, 2010, 116, 1289-1289.	1.4	0
114	Telomere Length In Ph - Negative Chronic Myeloproliferative Neoplasms: It Is Reduced According to JAK2 V617F Mutation Allele Burden and It Is Not Affected by Cytoreductive Treatment with Hydroxyurea. Blood, 2010, 116, 1975-1975.	1.4	1
115	Pre-Operative Bone Marrow-Derived Cell Mobilization by G-CSF Enhances Osseointegration of Bone Substitute In Patients Undergoing Surgery with High Tibial Valgus Osteotomy. Blood, 2010, 116, 4773-4773.	1.4	0
116	Lenalidomide as Single Agent to Control Minimal Residual Disease in Chronic Lymphocytic Leukemia In First Complete Remission: Report of Three cases. Blood, 2010, 116, 4640-4640.	1.4	0
117	Exposure of Cultured Human Mesenchymal Stem Cells to Chemotherapy Induces An Early and Permanent Telomere Loss: Biological and Clinical Implications. Blood, 2010, 116, 4776-4776.	1.4	0
118	A Recent Update of Three Consecutive Prospective Trials with High-Dose Therapy and Autograft, without or with Rituximab, as Primary Treatment for Advanced-Stage Follicular Lymphoma (FL) Shows a Sizeable Group of Patients Surviving in Continuous Complete Remission up to 16 Years After the End of Treatment: Should We Still Consider FL An Incurable Disease ? Blood, 2009, 114, 882-882.	1.4	2
119	Dexamethasone, Cytarabine and Cisplatin or Oxaliplatin Schedule (DHAP or Ox-DHA) Is Effective and Widely Applicable in Chronic Lymphocytic Leukemia and Waldenstrol^m Macroglobulinemia Blood, 2009, 114, 3434-3434.	1.4	1
120	Monitoring of Post-Transplant Hematopoiesis in Patients Receiving High-Dose Yttrium-90-Ibritumomab Tiuxetan (Zevalin®) with Autograft: Lack of Detection of Remarkable Abnormalities Blood, 2008, 112, 2158-2158.	1.4	0
121	The Degree of Telomere Loss in Hematopoietic Cells Correlates with the Risk of Secondary Myelodysplasia/Acute Leukemia Development Following Autologous Stem Cell Transplantation Blood, 2007, 110, 1672-1672.	1.4	2
122	Telomere Length of Hematopoietic Cells Following Autologous and Allogeneic Stem Cell Transplant (SCT) Reflects That of Grafted Cells: Can the Transplant of Younger Stem Cells Be Exploited To Rejuvenate Hematopoiesis? Blood, 2007, 110, 3025-3025.	1.4	0