Markus Christian Leuenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9240152/publications.pdf

Version: 2024-02-01

159 papers 15,890 citations

28274 55 h-index 120 g-index

188 all docs $\frac{188}{\text{docs citations}}$

188 times ranked

12732 citing authors

#	Article	IF	CITATIONS
1	High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431, 147-151.	27.8	2,489
2	Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 2007, 317, 793-796.	12.6	1,880
3	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	27.8	1,111
4	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
5	A 1000-year high precision record of delta13C in atmospheric CO2. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 170-193.	1.6	404
6	Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change, 2015, 5, 579-583.	18.8	357
7	Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature, 1992, 357, 488-490.	27.8	350
8	Carbon Isotope Constraints on the Deglacial CO ₂ Rise from Ice Cores. Science, 2012, 336, 711-714.	12.6	339
9	Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth and Planetary Science Letters, 2006, 243, 504-519.	4.4	338
10	An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 2013, 9, 1715-1731.	3.4	324
11	Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmospheric Chemistry and Physics, 2007, 7, 4953-4976.	4.9	289
12	${\rm CO}<{\rm sub}>2$ surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research, 2010, 115, .	3.3	276
13	Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate of the Past, 2014, 10, 887-902.	3.4	266
14	The age of the air in the firn and the ice at Summit, Greenland. Journal of Geophysical Research, 1993, 98, 2831-2838.	3.3	248
15	Greenland temperature response to climate forcing during the last deglaciation. Science, 2014, 345, 1177-1180.	12.6	226
16	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	9.5	223
17	Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature, 2009, 461, 507-510.	27.8	203
18	16°C Rapid Temperature Variation in Central Greenland 70,000 Years Ago. Science, 1999, 286, 934-937.	12.6	188

#	Article	IF	CITATIONS
19	Wood Cellulose Preparation Methods and Mass Spectrometric Analyses of l´13C, l´18O, and Nonexchangeable l´2H Values in Cellulose, Sugar, and Starch:Â An Interlaboratory Comparison. Analytical Chemistry, 2007, 79, 4603-4612.	6.5	185
20	Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews, 2011, 30, 2433-2445.	3.0	181
21	Signal strength and climate calibration of a European treeâ€ring isotope network. Geophysical Research Letters, 2007, 34, .	4.0	180
22	Pleistocene water intrusions from the Mediterranean and Caspian seas into theÂBlackÂSea. Nature Geoscience, 2011, 4, 236-239.	12.9	177
23	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	9.5	175
24	Changing boreal methane sources and constant biomass burning during the last termination. Nature, 2008, 452, 864-867.	27.8	173
25	Reducing uncertainties in $\hat{l}'13C$ analysis of tree rings: Pooling, milling, and cellulose extraction. Journal of Geophysical Research, 1998, 103, 19519-19526.	3.3	165
26	Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Climate of the Past, 2010, 6, 345-365.	3.4	143
27	Oxygen Isotope Analysis of Cellulose:  An Interlaboratory Comparison. Analytical Chemistry, 1998, 70, 2074-2080.	6.5	124
28	Volcanic influence on centennial to millennial Holocene Greenland temperature change. Scientific Reports, 2017, 7, 1441.	3.3	120
29	A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP). Geophysical Research Letters, 2004, 31, .	4.0	108
30	Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature, 1992, 360, 449-451.	27.8	105
31	Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmospheric Chemistry and Physics, 2016, 16, 3683-3710.	4.9	103
32	Firn-air ι15N in modern polar sites and glacial–interglacial ice: a model-data mismatch during glacial periods in Antarctica?. Quaternary Science Reviews, 2006, 25, 49-62.	3.0	99
33	What drives the millennial and orbital variations of \hat{l} 180atm?. Quaternary Science Reviews, 2010, 29, 235-246.	3.0	98
34	The variability in the carbon sinks as reconstructed for the last 1000 years. Geophysical Research Letters, 1999, 26, 1437-1440.	4.0	95
35	Synchronising EDML and NorthGRIP ice cores using ι18O of atmospheric oxygen (ι18Oatm) and CH4 measurements over MIS5 (80–123 kyr). Quaternary Science Reviews, 2010, 29, 222-234.	3.0	89
36	Delta15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: A case study for the 8200 B.P. event on GRIP ice. Journal of Geophysical Research, 1999, 104, 22163-22170.	3.3	81

#	Article	IF	CITATIONS
37	High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ180 correlation between a Gerzensee-stack and NGRIP. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 391, 13-24.	2.3	81
38	20thÂcentury changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences, 2017, 14, 2641-2673.	3.3	81
39	Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Science Advances, 2019, 5, eaav3809.	10.3	81
40	Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth and Planetary Science Letters, 2004, 225, 221-232.	4.4	80
41	² Hâ€fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ ² H values of plant organic compounds. New Phytologist, 2018, 218, 479-491.	7.3	78
42	Anomalous flow below 2700 m in the EPICA Dome C ice core detected using Î ¹⁸ O of atmospheric oxygen measurements. Climate of the Past, 2007, 3, 341-353.	3.4	74
43	Predicting terrestrial & mp;lt;sup>222Rn flux using gamma dose rate as a proxy. Atmospheric Chemistry and Physics, 2007, 7, 2789-2795.	4.9	72
44	Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters, 2006, 243, 61-73.	4.4	71
45	delta18O of tree rings of beech (Fagus silvatica) as a record of delta18O of the growing season precipitation. Tellus, Series B: Chemical and Physical Meteorology, 1997, 49, 80-92.	1.6	69
46	Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	67
47	Spatial gradients of temperature, accumulation and Î'& t;sup>18& t;/sup>O-ice in Greenland over a series of Dansgaard–Oeschger events. Climate of the Past, 2013, 9, 1029-1051.	3.4	67
48	Variations of 180/160 in plants from temperate peat bogs (Switzerland): implications for paleoclimatic studies. Earth and Planetary Science Letters, 2002, 202, 419-434.	4.4	66
49	Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophysical Research Letters, 2003, 30, .	4.0	64
50	The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes. Climate Dynamics, 2006, 26, 273-284.	3.8	63
51	Pooled versus separate measurements of tree-ring stable isotopes. Science of the Total Environment, 2011, 409, 2244-2251.	8.0	63
52	Rapid online equilibration method to determine the D/H ratios of non-exchangeable hydrogen in cellulose. Rapid Communications in Mass Spectrometry, 2006, 20, 3337-3344.	1.5	62
53	Analysis of \hat{l} 180 in tree rings: Wood-cellulose comparison and method dependent sensitivity. Journal of Geophysical Research, 1999, 104, 19267-19273.	3.3	61
54	NGRIP CH& lt; sub& gt; 4& lt; /sub& gt; concentration from 120 to 10 kyr before present and its relation to a l´& lt; sup& gt; 15& lt; /sup& gt; N temperature reconstruction from the same ice core. Climate of the Past, 2014, 10, 903-920.	3.4	61

#	Article	IF	Citations
55	Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica Et Cosmochimica Acta, 2017, 205, 187-210.	3.9	59
56	Triple isotope (δD, δ170, δ180) study on precipitation, drip water and speleothem fluid inclusions for a Western Central European cave (NWÂSwitzerland). Quaternary Science Reviews, 2015, 127, 73-89.	3.0	56
57	A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quaternary Science Reviews, 2011, 30, 3467-3480.	3.0	55
58	New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Climate of the Past, 2014, 10, 1291-1304.	3.4	54
59	Glacial–interglacial temperature change in the tropical West Pacific: AÂcomparison of stalagmite-based paleo-thermometers. Quaternary Science Reviews, 2015, 127, 90-116.	3.0	50
60	Firn processes and \hat{l} 15N: potential for a gas-phase climate proxy. Quaternary Science Reviews, 2010, 29, 28-42.	3.0	48
61	Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. Journal of Geophysical Research, 2012, 117, .	3.3	48
62	CO2 and O2/N2 variations in and just below the bubble–clathrate transformation zone of Antarctic ice cores. Earth and Planetary Science Letters, 2010, 297, 226-233.	4.4	47
63	Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmospheric Chemistry and Physics, 2014, 14, 1897-1907.	4.9	45
64	Pluvial periods in Southern Arabia over the last 1.1 million-years. Quaternary Science Reviews, 2020, 229, 106112.	3.0	45
65	Towards orbital dating of the EPICA Dome C ice core using Î O& t;sub>2& t;/sub>. Climate of the Past, 2012, 8, 191-203.	3.4	43
66	Two-phase change in CO2, Antarctic temperature and global climate during Termination II. Nature Geoscience, 2013, 6, 1062-1065.	12.9	43
67	Are carbohydrate storage strategies of trees traceable by early–latewood carbon isotope differences?. Trees - Structure and Function, 2015, 29, 859-870.	1.9	41
68	An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores. Journal of Geophysical Research, 1997, 102, 26527-26538.	3.3	40
69	Simultaneous Determination of Stable Carbon, Oxygen, and Hydrogen Isotopes in Cellulose. Analytical Chemistry, 2015, 87, 376-380.	6.5	39
70	The CarboCount CH sites: characterization of a dense greenhouse gas observation network. Atmospheric Chemistry and Physics, 2015, 15, 11147-11164.	4.9	38
71	Measurements of CO ₂ , its stable isotopes, O ₂ N ₂ , and ²²² Rn at Bern, Switzerland. Atmospheric Chemistry and Physics. 2006. 6. 1991-2004.	4.9	35
72	Spatioâ€temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Global Ecology and Biogeography, 2019, 28, 1295-1309.	5.8	35

#	Article	IF	Citations
73	European source and sink areas of CO& t;sub>2& t; sub> retrieved from Lagrangian transport model interpretation of combined O& t;sub>2& t; sub> and CO& t;sub>2& t; sub> measurements at the high alpine research station Jungfraujoch. Atmospheric Chemistry and Physics, 2011, 11, 8017-8036.	4.9	33
74	A global picture of the first abrupt climatic event occurring during the last glacial inception. Geophysical Research Letters, 2012, 39, .	4.0	33
75	Reconstruction of past climate conditions over central Europe from groundwater data. Quaternary Science Reviews, 2011, 30, 3423-3429.	3.0	32
76	An inter-regional assessment of concentrations and $\hat{1}$ 13C values of methane and dissolved inorganic carbon in small European lakes. Aquatic Sciences, 2015, 77, 667-680.	1.5	32
77	On the use of δ18Oatm for ice core dating. Quaternary Science Reviews, 2018, 185, 244-257.	3.0	32
78	\hat{l} 18O of atmospheric oxygen measured on the GRIP Ice Core Document Stratigraphic disturbances in the lowest 10% of the core. Geophysical Research Letters, 1996, 23, 1049-1052.	4.0	31
79	Millenial scale variations of the isotopic composition of atmospheric oxygen over Marine Isotopic Stage 4. Earth and Planetary Science Letters, 2007, 258, 101-113.	4.4	30
80	Swiss tree rings reveal warm and wet summers during medieval times. Geophysical Research Letters, 2014, 41, 1732-1737.	4.0	30
81	Comparison of continuous in situ CO ₂ observations at Jungfraujoch using two different measurement techniques. Atmospheric Measurement Techniques, 2015, 8, 57-68.	3.1	30
82	Continuous CO ₂ /CH ₄ /CO measurements (2012–2014) at Beromünster tall tower station in Switzerland. Biogeosciences, 2016, 13, 2623-2635.	3.3	30
83	Temperature dependencies of high-temperature reduction on conversion products and their isotopic signatures. Rapid Communications in Mass Spectrometry, 2007, 21, 1587-1598.	1.5	29
84	2H-enrichment of cellulose and n-alkanes in heterotrophic plants. Oecologia, 2019, 189, 365-373.	2.0	29
85	Stable carbon isotope composition and concentrations of CO2 and CH4 in the deep catotelm of a peat bog. Geochimica Et Cosmochimica Acta, 2008, 72, 6015-6026.	3.9	28
86	Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region. Polar Science, 2017, 13, 23-32.	1.2	28
87	More than climate: Hydrogen isotope ratios in tree rings as novel plant physiological indicator for stress conditions. Dendrochronologia, 2021, 65, 125788.	2.2	28
88	Atmospheric O2, CO2and δ13C observations from the remote sites Jungfraujoch, Switzerland, and Puy de D´me, France. Geophysical Research Letters, 2005, 32, .	4.0	26
89	The stable carbon isotopic composition of <scp><i>D</i></scp> <i>aphnia</i> ephippia in small, temperate lakes reflects inâ€ake methane availability. Limnology and Oceanography, 2015, 60, 1064-1075.	3.1	26
90	Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 2016, 137, 15-32.	3.0	26

#	Article	IF	CITATIONS
91	To What Extent Can Ice Core Data Contribute to the Understanding of Plant Ecological Developments of the Past?. Journal of Nano Education (Print), 2007, 1, 211-233.	0.3	25
92	Methods to merge overlapping tree-ring isotope series to generate multi-centennial chronologies. Chemical Geology, 2012, 294-295, 127-134.	3.3	25
93	Gas adsorption and desorption effects on cylinders and their importance for long-term gas records. Atmospheric Measurement Techniques, 2015, 8, 5289-5299.	3.1	25
94	Comment on "Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores―by C. Wunsch. Quaternary Science Reviews, 2004, 23, 2053-2054.	3.0	24
95	Temporal patterns in lacustrine stable isotopes as evidence for climate change during the late glacial in the Southern European Alps. Journal of Paleolimnology, 2008, 40, 885-895.	1.6	24
96	Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170278.	2.6	24
97	400 Years of summer hydroclimate from stable isotopes in Iberian trees. Climate Dynamics, 2017, 49, 143-161.	3.8	24
98	Modeling the signal transfer of sea water Î'180 to the Î'180 of atmospheric oxygen using a diagnostic box model for the terrestrial and marine biosphere. Journal of Geophysical Research, 1997, 102, 26841-26850.	3.3	23
99	¹³ C and ¹⁸ O fractionation effects on open splits and on the ion source in continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1419-1430.	1.5	23
100	CO2 concentration measurements on air samples by mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14, 1552-1557.	1.5	22
101	On-Line Determination of Oxygen Isotope Ratios of Water or Ice by Mass Spectrometry. Analytical Chemistry, 2002, 74, 4611-4617.	6.5	22
102	A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia. Hydrobiologia, 2009, 631, 121-141.	2.0	22
103	Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-Π& amp; lt; sup & amp; lt; ls & amp; ls & amp; lt; ls & amp; ls &	3.4	22
104	Measurements and trend analysis of O2, CO2 and δ13C of CO2 from the high altitude research station Junfgraujoch, Switzerland — A comparison with the observations from the remote site Puy de Dôme, France. Science of the Total Environment, 2008, 391, 203-210.	8.0	21
105	Qualitative Distinction of Autotrophic and Heterotrophic Processes at the Leaf Level by Means of Triple Stable Isotope (C–O–H) Patterns. Frontiers in Plant Science, 2015, 6, 1008.	3.6	19
106	Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001. Climate of the Past, 2014, 10, 1093-1108.	3.4	18
107	Estimation of the fossil fuel component in atmospheric CO<sub>2</sub> based on radiocarbon measurements at the Berom $\tilde{A}\frac{1}{4}$ nster tall tower, Switzerland. Atmospheric Chemistry and Physics, 2017, 17, 10753-10766.	4.9	18
108	Fast highâ€precision onâ€line determination of hydrogen isotope ratios of water or ice by continuousâ€flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 1319-1325.	1.5	17

#	Article	IF	CITATIONS
109	A new gas inlet system for an isotope ratio mass spectrometer improves reproducibility. Rapid Communications in Mass Spectrometry, 2000, 14, 1543-1551.	1.5	16
110	Continuous Extraction of Trapped Air from Bubble Ice or Water for On-Line Determination of Isotope Ratios. Analytical Chemistry, 2003, 75, 2324-2332.	6.5	16
111	Measurements of greenhouse gases at Berom $\tilde{A}^{1}\!\!/\!\!$ nster tall-tower station in Switzerland. Atmospheric Measurement Techniques, 2016, 9, 2603-2614.	3.1	16
112	Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO ₂ data and its application to European elevated mountain stations. Atmospheric Measurement Techniques, 2018, 11, 1501-1514.	3.1	16
113	Measurements of isotope and elemental ratios of air from polar ice with a new on-line extraction method. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	15
114	A CO-based method to determine the regional biospheric signal in atmospheric CO ₂ . Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1353388.	1.6	15
115	Atmospheric O2, CO2 and 13C measurements from aircraft sampling over Griffin Forest, Perthshire, UK. Rapid Communications in Mass Spectrometry, 2005, 19, 2399-2406.	1.5	14
116	Multi-isotope labelling of organic matter by diffusion of & amp;lt;sup>29-H <sub<sup>2amp;lt;/sub>2 amp;lt;/sub> into the leaves and its distribution within the plant. Biogeosciences, 2015, 12, 1865-1879.</sub<sup>	p;gt;2&ar	np; t;/sub&a
117	Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores. Climate of the Past, 2016, 12, 729-748.	3.4	13
118	Atmospheric CO ₂ , Î'(O ₂) and Î' ¹³ CO ₂ measurements at Jungfraujoch, Switzerland: results from a flask sampling intercomparison program. Atmospheric	3.1	12
119	Measurement Techniques, 2013, 6, 1805-1815. Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure. Atmospheric Chemistry and Physics, 2015, 15, 13895-13914.	4.9	12
120	The 8.2â€ka BP event in northâ€eastern North America: first combined oxygen and hydrogen isotopic data from peat in Newfoundland. Journal of Quaternary Science, 2016, 31, 416-425.	2.1	12
121	Redox zonation and organic matter oxidation in palaeogroundwater of glacial origin from the Baltic Artesian Basin. Chemical Geology, 2018, 488, 149-161.	3.3	12
122	To What Extent Can Ice Core Data Contribute to the Understanding of Plant Ecological Developments of the Past?., 2007,, 211-III.		12
123	On-line systems for continuous water and gas isotope ratio measurementsâ€. Isotopes in Environmental and Health Studies, 2005, 41, 189-205.	1.0	11
124	Analyzing atmospheric trace gases and aerosols using passenger aircraft. Eos, 2005, 86, 77.	0.1	11
125	High-resolution delta13C measurements on ancient air extracted from less than 10 cm3 of ice. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 138-144.	1.6	10
126	Intercomparison of in situ NDIR and column FTIR measurements of CO ₂ at Jungfraujoch. Atmospheric Chemistry and Physics, 2016, 16, 9935-9949.	4.9	10

#	Article	lF	Citations
127	Preliminary evaluation of the potential of tree-ring cellulose content as a novel supplementary proxy in dendroclimatology. Biogeosciences, 2018, 15, 1047-1064.	3.3	10
128	Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns. Biogeosciences, 2020, 17, 4871-4882.	3.3	10
129	Larch Cellulose Shows Significantly Depleted Hydrogen Isotope Values With Respect to Evergreen Conifers in Contrast to Oxygen and Carbon Isotopes. Frontiers in Earth Science, 2020, 8, .	1.8	9
130	Disentangle Kinetic From Equilibrium Fractionation Using Primary (δ170, δ180, δD) and Secondary (Î˚170,) Tj ET Science, 2021, 9, .	Qq0 0 0 r 1.8	gBT /Overloc 9
131	Spruce tree-ring proxy signals during cold and warm periods. Dendrobiology, 0, 77, 3-18.	0.6	9
132	Comparison between real time and flask measurements of atmospheric O2 and CO2 performed at the High Altitude Research Station Jungfraujoch, Switzerland. Science of the Total Environment, 2008, 391, 196-202.	8.0	8
133	Measurements of the sup > 17 < sup > 0 Excess in Water with the Equilibration Method. Analytical Chemistry, 2008, 80, 3244-3253.	6.5	8
134	Net CO ₂ surface emissions at Bern, Switzerland inferred from ambient observations of CO ₂ , Î'(O ₂ /N ₂), and ²²² Rn using a customized radon tracer inversion. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1580-1591.	3.3	8
135	High-precision atmospheric oxygen measurement comparisons between a newly built CRDS analyzer and existing measurement techniques. Atmospheric Measurement Techniques, 2019, 12, 6803-6826.	3.1	8
136	Assessing local CO ₂ contamination revealed by two near-by high altitude records at Jungfraujoch, Switzerland. Environmental Research Letters, 2021, 16, 044037.	5.2	8
137	Triple Water Vapour–Isotopologues Record from Chhota Shigri, Western Himalaya, India: A Unified Interpretation based on Î′170, Î′180, δD and Comparison to Meteorological Parameters. Frontiers in Earth Science, 2021, 8, .	1.8	8
138	Bryozoan stable carbon and hydrogen isotopes: relationships between the isotopic composition of zooids, statoblasts and lake water. Hydrobiologia, 2016, 765, 209-223.	2.0	7
139	Observations of Atmospheric Methane and Carbon Dioxide Mixing Ratios: Tall-Tower or Mountain-Top Stations?. Boundary-Layer Meteorology, 2017, 164, 135-159.	2.3	6
140	Younger Dryas and Holocene environmental change at the Atlantic fringe of Europe derived from lakeâ€sediment stableâ€isotope records from western Ireland. Boreas, 2020, 49, 233-247.	2.4	6
141	Elucidating local pollution and site representativeness at the Jungfraujoch, Switzerland through parallel aerosol measurements at an adjacent mountain ridge. Environmental Research Communications, 2021, 3, 021001.	2.3	6
142	Comment on "The phase relation between atmospheric carbon dioxide and global temperature― Humlum et al. [Glob. Planet. Change 100: 51–69.]: Isotopes ignored. Global and Planetary Change, 2013, 109, 1-2.	3.5	5
143	Unveiling the anatomy of Termination 3 using water and air isotopes in the Dome C ice core, East Antarctica. Quaternary Science Reviews, 2019, 211, 156-165.	3.0	5
144	Origin and percolation times of Milandre Cave drip water determined by tritium time series and beryllium-7 data from Switzerland. Journal of Environmental Radioactivity, 2020, 222, 106346.	1.7	5

#	Article	IF	CITATIONS
145	Quantifying the Porosity of Crystalline Rocks by In Situ and Laboratory Injection Methods. Minerals (Basel, Switzerland), 2021, 11, 1072.	2.0	4
146	The Stable Hydrogen Isotopic Signature: From Source Water to Tree Rings. Tree Physiology, 2022, , 331-359.	2.5	4
147	Estimation of temperature – altitude gradients during the Pleistocene–Holocene transition from Swiss stalagmites. Earth and Planetary Science Letters, 2020, 544, 116387.	4.4	3
148	Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis. Atmospheric Measurement Techniques, 2020, 13, 119-130.	3.1	3
149	Investigating Masking Effects of Age Trends on the Correlations among Tree Ring Proxies. Forests, 2021, 12, 1523.	2.1	3
150	Research at Jungfraujoch. Science of the Total Environment, 2008, 391, 169-176.	8.0	2
151	Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis. Atmospheric Measurement Techniques, 2020, 13, 101-117.	3.1	2
152	Comparison of Holocene temperature reconstructions based on GISP2 multiple-gas-isotope measurements. Quaternary Science Reviews, 2022, 280, 107274.	3.0	2
153	Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores. Climate of the Past, 2018, 14, 763-788.	3.4	1
154	Oxygen and hydrogen isotope analysis of experimentally generated magmatic and metamorphic aqueous fluids using laser spectroscopy (WS-CRDS). Chemical Geology, 2021, 584, 120487.	3.3	1
155	High Precision Carbon Dioxide and Oxygen Measurements Onboard of a Passenger Airplane. Chimia, 2006, 60, 817-817.	0.6	0
156	A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia. , 2009, , 121-141.		0
157	Comparison of Three Measurement Principles on Water Triple Oxygen Isotopologues. Frontiers in Earth Science, 2021, 9, .	1.8	0
158	Challenges in the Direct Determination of 17Oexcess in Microliter Amount of Water Extracted From Speleothem Fluid Inclusions. Frontiers in Earth Science, 2021, 9, .	1.8	0
159	Hydrogen isotope ratios as a Larix detector in archaeological wood samples. Journal of Archaeological Science: Reports, 2022, 41, 103261.	0.5	0