List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9239594/publications.pdf Version: 2024-02-01

		159585	161849
131	3,748	30	54
papers	citations	h-index	g-index
132	132	132	4051
all docs	docs citations	times ranked	citing authors

<u> Ρίζηι Chen</u>

#	Article	IF	CITATIONS
1	Insights into Microstructure and Surface Properties of Pd/C for Liquid Phase Phenol Hydrogenation to Cyclohexanone. Catalysis Letters, 2023, 153, 208-218.	2.6	2
2	Pd Nanoparticles Supported on Hierarchically Porous Carbon Nanofibers as Efficient Catalysts for Phenol Hydrogenation. Catalysis Letters, 2022, 152, 340-352.	2.6	7
3	Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone. Chinese Journal of Chemical Engineering, 2022, 44, 87-93.	3.5	2
4	Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol. Chemical Engineering Science, 2022, 248, 117160.	3.8	20
5	Kinetics of liquid-phase phenol hydrogenation enhanced by membrane dispersion. Chemical Engineering Science, 2022, 249, 117346.	3.8	5
6	Two-dimensional N-doped Pd/carbon for highly efficient heterogeneous catalysis. Chemical Communications, 2022, 58, 1422-1425.	4.1	7
7	Controllable synthesis of Pd-zeolitic imidazolate framework-porous graphene oxide (Pd-ZIF-pGO) with enhanced catalytic properties for the reduction of nitroarenes. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 867-879.	1.7	1
8	Pd nanoparticles decorated ZIFs/polymer core-shell nanofibers derived hierarchically porous N-doped carbon for efficient catalytic conversion of phenol. Applied Catalysis A: General, 2022, 634, 118538.	4.3	11
9	Hierarchical Pd@PC-COFs as Efficient Catalysts for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2022, 61, 4534-4545.	3.7	9
10	Controllable synthesis of hollow ZIF-8 microspheres via interface reaction with enhanced CO2 adsorption. Journal of Solid State Chemistry, 2022, 309, 123017.	2.9	4
11	ZIF-Derived Co/Zn Bimetallic Catalytic Membrane with Abundant CNTs for Highly Efficient Reduction of <i>p</i> -Nitrophenol. Industrial & Engineering Chemistry Research, 2022, 61, 7862-7873.	3.7	8
12	A simple and versatile synthesis strategy of hollow MOFs for CO ₂ separation and catalysis. Chemical Communications, 2022, 58, 7944-7947.	4.1	13
13	Nickel-Catalyzed Chemo- and Regioselective Arylcyanation of β,γ-Unsaturated Amides. Organic Letters, 2022, 24, 4328-4332.	4.6	5
14	Controllable Synthesis of 1D Pd@N-CNFs with High Catalytic Performance for Phenol Hydrogenation. Catalysis Letters, 2021, 151, 1013-1024.	2.6	6
15	Catalytic base-controlled regiodivergent heteronucleophilic hydrofunctionalization of β,γ-unsaturated amides. Chemical Communications, 2021, 57, 9756-9759.	4.1	6
16	Chemo- and regioselective nucleophilic hydrofunctionalization of unactivated aliphatic alkenes under transition-metal-free catalysts. Green Chemistry, 2021, 23, 3250-3255.	9.0	5
17	Flexible hierarchical Pd/SiO ₂ -TiO ₂ nanofibrous catalytic membrane for complete and continuous reduction of <i>p</i> -nitrophenol. Journal of Experimental Nanoscience, 2021, 16, 62-80.	2.4	12
18	Controllable Synthesis of Pd-ZIF-L-GO: The Role of Drying Temperature. Industrial & Engineering Chemistry Research, 2021, 60, 4847-4859.	3.7	13

#	Article	IF	CITATIONS
19	Well-Defined MOF-Derived Hierarchically Porous N-Doped Carbon Materials for the Selective Hydrogenation of Phenol to Cyclohexanone. Industrial & Engineering Chemistry Research, 2021, 60, 5806-5815.	3.7	28
20	Rebound behaviors of hydrophilic particle on gas bubble: effect of particle size and liquid properties. Journal of Chemical Technology and Biotechnology, 2021, 96, 2400.	3.2	1
21	Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2021, 60, 8969-8990.	3.7	13
22	Modeling and Simulation of Hydrodynamics and Filtration in a Membraneâ€Assisted Stirred Slurry Reactor. Chemical Engineering and Technology, 2021, 44, 1548-1557.	1.5	2
23	Palladium Nanoparticles Anchored on COFs Prepared by Simple Calcination for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2021, 60, 13523-13533.	3.7	11
24	Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol. Separation and Purification Technology, 2021, 279, 119731.	7.9	17
25	Hierarchical Pd@ZIFs as Efficient Catalysts for <i>p</i> -Nitrophenol Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 15045-15055.	3.7	12
26	Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion. Chemical Engineering Journal, 2020, 386, 120744.	12.7	20
27	Pd-ZIF-L-GO ternary nanolaminates for enhanced heterogeneous catalysis. 2D Materials, 2020, 7, 015001.	4.4	4
28	Pilot-Scale Cyclohexanone Production through Phenol Hydrogenation over Pd/CN in a Continuous Ceramic Membrane Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 13848-13851.	3.7	11
29	Palladium-Catalyzed Intermolecular Polarity-Mismatched Addition of Unactivated Alkyl Radicals to Unactivated Alkenes. ACS Catalysis, 2020, 10, 14107-14116.	11.2	27
30	Bimetallic PtFe-Catalyzed Selective Hydrogenation of Furfural to Furfuryl Alcohol: Solvent Effect of Isopropanol and Hydrogen Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12722-12730.	6.7	61
31	Pd Nanoparticles Loaded on Ceramic Membranes by Atomic Layer Deposition with Enhanced Catalytic Properties. Industrial & Engineering Chemistry Research, 2020, 59, 19564-19573.	3.7	11
32	Pd Nanoparticles Loaded on Two-Dimensional Covalent Organic Frameworks with Enhanced Catalytic Performance for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 18489-18499.	3.7	26
33	Phenol hydrogenation to cyclohexanone over palladium nanoparticles loaded on charming activated carbon adjusted by facile heat treatment. Chinese Journal of Chemical Engineering, 2020, 28, 2600-2606.	3.5	12
34	Highly Efficient Phenol Hydrogenation to Cyclohexanone over Pd@CN-rGO in Aqueous Phase. Industrial & Engineering Chemistry Research, 2020, 59, 10768-10777.	3.7	20
35	Bubble dynamics and mass transfer characteristics from an immersed orifice plate. Journal of Chemical Technology and Biotechnology, 2020, 95, 1729-1738.	3.2	4
36	Controllable Structure and Basic Sites of Pd@N-Doped Carbon Derived from Co/Zn-ZIFs: Role of Co. Industrial & Engineering Chemistry Research, 2019, 58, 14678-14687.	3.7	22

#	Article	IF	CITATIONS
37	Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2019, 58, 20553-20561.	3.7	10
38	Turning surface properties of Pd/N-doped porous carbon by trace oxygen with enhanced catalytic performance for selective phenol hydrogenation to cyclohexanone. Applied Catalysis A: General, 2019, 588, 117306.	4.3	34
39	Microbubble generation with shear flow on large-area membrane for fine particle flotation. Chemical Engineering and Processing: Process Intensification, 2019, 145, 107671.	3.6	22
40	Insights into the Stability of Pd/CN Catalyst in Liquid Phase Hydrogenation of Phenol to Cyclohexanone: Role of Solvent. Catalysis Letters, 2019, 149, 3087-3096.	2.6	4
41	Continuous and complete conversion of high concentration <i>p</i> â€nitrophenol in a flowâ€through membrane reactor. AICHE Journal, 2019, 65, e16692.	3.6	27
42	Tuning surface properties of N-doped carbon with TiO2 nano-islands for enhanced phenol hydrogenation to cyclohexanone. Applied Surface Science, 2019, 488, 555-564.	6.1	30
43	Selective catalytic hydrogenation of phenol to cyclohexanone over Pd@CN: Role of CN precursor separation mode. Canadian Journal of Chemical Engineering, 2019, 97, 1506-1514.	1.7	10
44	Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis. Korean Journal of Chemical Engineering, 2019, 36, 385-392.	2.7	10
45	Hydrogenation and Hydrolysis of Furfural to Furfuryl Alcohol, Cyclopentanone, and Cyclopentanol with a Heterogeneous Copper Catalyst in Water. Industrial & Engineering Chemistry Research, 2019, 58, 3988-3993.	3.7	61
46	Computational Fluid Dynamics Simulation of a Novel Membrane Distributor of Bubble Columns for Generating Microbubbles. Industrial & Engineering Chemistry Research, 2019, 58, 1087-1094.	3.7	8
47	Matching Relationship Between Carbon Material and Pd Precursor. Catalysis Letters, 2019, 149, 813-822.	2.6	12
48	Fabrication of Pd@N-doped porous carbon-TiO2 as a highly efficient catalyst for the selective hydrogenation of phenol to cyclohexanone in water. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 463-476.	1.7	10
49	Controlling microbubbles in alcohol solutions by using a multiâ€channel ceramic membrane distributor. Journal of Chemical Technology and Biotechnology, 2018, 93, 2456-2463.	3.2	9
50	Membrane Based Gas–Liquid Dispersion Integrated in Fixed-Bed Reactor: A Highly Efficient Technology for Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2018, 57, 158-168.	3.7	11
51	Efficient Control of Microbubble Properties by Alcohol Shear Flows in Ceramic Membrane Channels. Chemical Engineering and Technology, 2018, 41, 168-174.	1.5	15
52	Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method. Applied Surface Science, 2018, 435, 649-655.	6.1	40
53	Facile synthesis of hierarchically porous carbons by controlling the initial oxygen concentration in-situ carbonization of ZIF-8 for efficient water treatment. Chinese Journal of Chemical Engineering, 2018, 26, 2523-2530.	3.5	10
54	Selective phenol hydrogenation to cyclohexanone over Pd@N-doped porous carbon: role of storage under air of recovered catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 605-617.	1.7	5

#	Article	IF	CITATIONS
55	Heterogeneous cobalt catalysts for selective oxygenation of alcohols to aldehydes, esters and nitriles. RSC Advances, 2017, 7, 1498-1503.	3.6	36
56	Temperature-dependent synthesis of Pd@ZIF-L catalysts via an assembly method. Microporous and Mesoporous Materials, 2017, 243, 16-21.	4.4	16
57	Controlled synthesis of TiO 2 nanorod arrays immobilized on ceramic membranes with enhanced photocatalytic performance. Ceramics International, 2017, 43, 7261-7270.	4.8	35
58	Large scale preparation of microbubbles by multiâ€channel ceramic membranes: Hydrodynamics and mass transfer characteristics. Canadian Journal of Chemical Engineering, 2017, 95, 2176-2185.	1.7	26
59	High catalytic efficiency of <scp>Pd</scp> nanoparticles immobilized on <scp>TiO</scp> ₂ nanorodsâ€coated ceramic membranes. Canadian Journal of Chemical Engineering, 2017, 95, 2374-2382.	1.7	9
60	Insights into deactivation mechanism of Pd@CN catalyst in the liquid-phase hydrogenation of phenol to cyclohexanone. Journal of Industrial and Engineering Chemistry, 2017, 53, 333-340.	5.8	24
61	High efficient synthesis of methyl ethyl ketone oxime from ammoximation of methyl ethyl ketone over TS-1 in a ceramic membrane reactor. Chemical Engineering and Processing: Process Intensification, 2017, 116, 1-8.	3.6	12
62	Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions. Chinese Journal of Catalysis, 2017, 38, 589-596.	14.0	18
63	Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol. Chinese Journal of Chemical Engineering, 2017, 25, 1195-1201.	3.5	12
64	A Side-Stream Catalysis/Membrane Filtration System for the Continuous Liquid-Phase Hydrogenation of Phenol over Pd@CN to Produce Cyclohexanone. Industrial & Engineering Chemistry Research, 2017, 56, 11755-11762.	3.7	18
65	Role of initial water content in glycerol hydrogenolysis to 1,2-propanediol over Cu–ZnO catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1129-1143.	1.7	12
66	Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbons derived from ZIF-67: Role of dicyandiamide. Applied Surface Science, 2017, 425, 484-491.	6.1	41
67	Fabrication of ceramic membrane supported palladium catalyst and its catalytic performance in liquid-phase hydrogenation reaction. Chemical Engineering Journal, 2017, 313, 1556-1566.	12.7	33
68	Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67: Enhanced catalytic performance in phenol hydrogenation. Journal of Industrial and Engineering Chemistry, 2017, 46, 258-265.	5.8	65
69	Organic Solventâ€Free Process forÂCyclohexanone Ammoximation by a Ceramic Membrane Distributor. Chemical Engineering and Technology, 2016, 39, 883-890.	1.5	9
70	Efficient recovery of ultrafine catalysts from oil/water/solid three-phase system by ceramic microfiltration membrane. Korean Journal of Chemical Engineering, 2016, 33, 2453-2459.	2.7	2
71	Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction. Catalysis Communications, 2016, 82, 24-28.	3.3	27
72	Heterogeneous cobalt catalysts for reductive amination with H ₂ : general synthesis of secondary and tertiary amines. RSC Advances, 2016, 6, 94068-94073.	3.6	34

#	Article	IF	CITATIONS
73	Highly efficient synthesis of cumene via benzene isopropylation over nano-sized beta zeolite in a submerged ceramic membrane reactor. Separation and Purification Technology, 2016, 170, 49-56.	7.9	10
74	Insights into deactivation mechanism of Cu–ZnO catalyst in hydrogenolysis of glycerol to 1,2-propanediol. Journal of Industrial and Engineering Chemistry, 2016, 35, 262-267.	5.8	27
75	Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties. Chemical Engineering Journal, 2016, 296, 146-153.	12.7	76
76	Controllable synthesis of Pd@ZIF-L catalysts by an assembly method. RSC Advances, 2016, 6, 21337-21344.	3.6	11
77	Immobilized palladium nanoparticles within polymers as active catalysts for Suzuki–Miyaura reaction. RSC Advances, 2016, 6, 16899-16903.	3.6	10
78	Synthesis of Pd@ZIF-8 via an assembly method: Influence of the molar ratios of Pd/Zn2+ and 2-methylimidazole/Zn2+. Microporous and Mesoporous Materials, 2016, 225, 33-40.	4.4	30
79	Enhanced catalytic properties of Pd nanoparticles by their deposition on ZnO-coated ceramic membranes. RSC Advances, 2016, 6, 2087-2095.	3.6	17
80	Palladium nanoparticles supported on a two-dimensional layered zeolitic imidazolate framework-L as an efficient size-selective catalyst. Microporous and Mesoporous Materials, 2016, 221, 220-227.	4.4	36
81	One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chemical Engineering Journal, 2016, 284, 724-732.	12.7	52
82	Synthesis of p-aminophenol from p-nitrophenol reduction over Pd@ZIF-8. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 307-317.	1.7	21
83	Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties. Korean Journal of Chemical Engineering, 2015, 32, 1759-1765.	2.7	9
84	Chemoselective Transfer Hydrogenation of Aldehydes and Ketones with a Heterogeneous Iridium Catalyst in Water. Catalysis Letters, 2015, 145, 1008-1013.	2.6	27
85	Selective and recyclable rhodium nanocatalysts for the reductive N-alkylation of nitrobenzenes and amines with aldehydes. RSC Advances, 2015, 5, 56936-56941.	3.6	22
86	Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry A, 2015, 3, 15715-15722.	10.3	149
87	Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 535-547.	1.7	16
88	A submerged catalysis/membrane filtration system for hydrogenolysis of glycerol to 1,2-propanediol over Cu–ZnO catalyst. Journal of Membrane Science, 2015, 489, 135-143.	8.2	15
89	Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu–ZnO catalyst. Chemical Engineering Journal, 2015, 264, 344-350.	12.7	57
90	Catalytic activity of palladium nanoparticles immobilized on an amino-functionalized ceramic membrane support. Chinese Journal of Catalysis, 2014, 35, 1990-1996.	14.0	15

#	Article	IF	CITATIONS
91	Insights into membrane fouling of a side-stream ceramic membrane reactor for phenol hydroxylation over ultrafine TS-1. Chemical Engineering Journal, 2014, 239, 373-380.	12.7	20
92	Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon, 2014, 72, 242-249.	10.3	47
93	One-step Continuous Phenol Synthesis Technology via Selective Hydroxylation of Benzene over Ultrafine TS-1 in a Submerged Ceramic Membrane Reactor. Chinese Journal of Chemical Engineering, 2014, 22, 1199-1207.	3.5	10
94	Extremely Efficient and Recyclable Absorbents for Oily Pollutants Enabled by Ultrathin-Layered Functionalization. ACS Applied Materials & amp; Interfaces, 2014, 6, 18816-18823.	8.0	37
95	A Dual-Membrane Airlift Reactor for Cyclohexanone Ammoximation over Titanium Silicalite-1. Industrial & Engineering Chemistry Research, 2014, 53, 6372-6379.	3.7	22
96	The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica. Catalysis Communications, 2014, 55, 34-37.	3.3	23
97	膜ä,Žè†œå应å™∵: çŽ°çŠ¶ã€æŒ'æ~ä,Žæœºé‡. Scientia Sinica Chimica, 2014, 44, 1469-1480.	0.4	1
98	Selective Reduction of Nitroarenes with Molybdenum Disulfide. Chinese Journal of Chemistry, 2013, 31, 987-991.	4.9	14
99	Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts. Chinese Journal of Chemical Engineering, 2013, 21, 205-215.	3.5	29
100	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chemical Communications, 2013, 49, 9500.	4.1	514
101	Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor. Korean Journal of Chemical Engineering, 2013, 30, 852-859.	2.7	7
102	Fabrication of Poly(γ-glutamic acid)-coated Fe3O4 Magnetic Nanoparticles and Their Application in Heavy Metal Removal. Chinese Journal of Chemical Engineering, 2013, 21, 1244-1250.	3.5	37
103	Selective-swelling-induced porous block copolymers and their robust TiO2 replicas via atomic layer deposition for antireflective applications. Journal of Materials Chemistry C, 2013, 1, 5133.	5.5	18
104	Enhanced phenol hydroxylation with oxygen using a ceramic membrane distributor. Chinese Journal of Catalysis, 2013, 34, 200-208.	14.0	11
105	Preparation of Palladium Nanoparticles Deposited on a Silanized Hollow Fiber Ceramic Membrane Support and Their Catalytic Properties. Industrial & Engineering Chemistry Research, 2013, 52, 5002-5008.	3.7	26
106	High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15, 3601.	2.6	149
107	Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous and Mesoporous Materials, 2013, 165, 200-204.	4.4	104
108	Enhanced Catalytic Properties of Palladium Nanoparticles Deposited on a Silanized Ceramic Membrane Support with a Flow-Through Method. Industrial & Engineering Chemistry Research, 2013, 52, 14099-14106.	3.7	25

#	Article	IF	CITATIONS
109	Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous and Mesoporous Materials, 2013, 168, 15-18.	4.4	55
110	Preparation and Characterization of Fe2O3/Ammonium Perchlorate (AP) Nanocomposites through Ceramic Membrane Anti-Solvent Crystallization. Propellants, Explosives, Pyrotechnics, 2012, 37, 183-190.	1.6	30
111	A Novel Dual-Membrane Reactor for Continuous Heterogeneous Oxidation Catalysis. Industrial & Engineering Chemistry Research, 2011, 50, 10458-10464.	3.7	30
112	Fabrication and Catalytic Properties of Palladium Nanoparticles Deposited on a Silanized Asymmetric Ceramic Support. Industrial & Amp; Engineering Chemistry Research, 2011, 50, 4405-4411.	3.7	35
113	Preparation of well-dispersed and anti-oxidized Ni nanoparticles using polyamioloamine dendrimers as templates and their catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Korean Journal of Chemical Engineering, 2011, 28, 717-722.	2.7	6
114	Template-free synthesis of TS-1 zeolite film on tubular mullite support. Applied Surface Science, 2011, 257, 1928-1931.	6.1	9
115	Integration of ceramic membrane microfiltration with powdered activated carbon for advanced treatment of oil-in-water emulsion. Separation and Purification Technology, 2011, 76, 373-377.	7.9	36
116	10.2478/s11814-009-0273-9., 2011, 26, 1580.		1
117	Catalytic mechanism and reaction pathway of acetone ammoximation to acetone oxime over TS-1. Korean Journal of Chemical Engineering, 2010, 27, 1423-1427.	2.7	6
118	Scouring-ball effect of microsized silica particles on operation stability of the membrane reactor for acetone ammoximation over TS-1. Chemical Engineering Journal, 2010, 156, 418-422.	12.7	20
119	Continuous Acetone Ammoximation over TS-1 in a Tubular Membrane Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 6309-6316.	3.7	32
120	Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1. Chinese Journal of Chemical Engineering, 2009, 17, 648-653.	3.5	7
121	Effect of initial solution apparent pH on the performance of submerged hybrid system for the p-nitrophenol hydrogenation. Korean Journal of Chemical Engineering, 2009, 26, 1580-1584.	2.7	2
122	Preparation and characterization of superfine ammonium perchlorate (AP) crystals through ceramic membrane anti-solvent crystallization. Journal of Crystal Growth, 2009, 311, 4575-4580.	1.5	26
123	Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chemical Engineering Journal, 2009, 145, 371-376.	12.7	44
124	Effect of Catalyst Morphology on the Performance of Submerged Nanocatalysis/Membrane Filtration System. Industrial & Engineering Chemistry Research, 2009, 48, 6600-6607.	3.7	21
125	Adding Microsized Silica Particles to the Catalysis/Ultrafiltration System: Catalyst Dissolution Inhibition and Flux Enhancement. Industrial & Engineering Chemistry Research, 2009, 48, 4933-4938.	3.7	16
126	A submerged membrane reactor for continuous phenol hydroxylation over TSâ€1. AICHE Journal, 2008, 54, 1842-1849.	3.6	42

#	Article	IF	CITATIONS
127	Preparation of Pd–B/TiO2 amorphous alloy catalysts and their performance on liquid-phase hydrogenation of p-nitrophenol. Chemical Engineering Journal, 2008, 138, 517-522.	12.7	33
128	Effect of Alumina Particle Size on Ni/Al2O3 Catalysts for p-Nitrophenol Hydrogenation. Chinese Journal of Chemical Engineering, 2007, 15, 884-888.	3.5	33
129	Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chemical Engineering Journal, 2006, 125, 9-14.	12.7	42
130	The Effect of Titania Structure on Ni/TiO2 Catalysts for p-Nitrophenol Hydrogenation. Chinese Journal of Chemical Engineering, 2006, 14, 665-669.	3.5	32
131	Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Applied Catalysis A: General, 2004, 277, 259-264.	4.3	301