Marzia Malcangio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9238667/publications.pdf

Version: 2024-02-01

26630 34986 9,979 111 56 98 citations g-index h-index papers 113 113 113 9483 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Response to Mylius et al Pain, 2022, 163, e495-e495.	4.2	О
2	Pain-resolving microglia. Science, 2022, 376, 33-34.	12.6	9
3	MicroRNAâ€21â€5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Annals of the New York Academy of Sciences, 2022, 1515, 184-195.	3.8	6
4	Changes in blood–spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain. Pain Reports, 2021, 6, e879.	2.7	20
5	REPRINTED WITH PERMISSION OF IASP – PAIN 162 (2021) 999–1006: Pain in the neurodegenerating brain: insights into pharmacotherapy for Alzheimer disease and Parkinson disease. Ból, 2021, 22, 46-55.	0.1	0
6	Fractalkine/CX3CR1 Pathway in Neuropathic Pain: An Update. Frontiers in Pain Research, 2021, 2, 684684.	2.0	17
7	Microglial heterogeneity in chronic pain. Brain, Behavior, and Immunity, 2021, 96, 279-289.	4.1	24
8	Pain in the neurodegenerating brain: insights into pharmacotherapy for Alzheimer disease and Parkinson disease. Pain, 2021, 162, 999-1006.	4.2	23
9	Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain, Behavior, and Immunity, 2020, 83, 248-259.	4.1	26
10	Translational value of preclinical models for rheumatoid arthritis pain. Pain, 2020, 161, 1399-1400.	4.2	3
11	Imbalance of proresolving lipid mediators in persistent allodynia dissociated from signs of clinical arthritis. Pain, 2020, 161, 2155-2166.	4.2	28
12	The Role of Spinal Cord CX3CL1/CX3CR1 Signalling in Chronic Pain. Current Tissue Microenvironment Reports, 2020, 1, 23-29.	3.2	4
13	Cathepsin S as a potential therapeutic target for chronic pain. Medicine in Drug Discovery, 2020, 7, 100047.	4.5	9
14	The role of microRNAs in neurons and neuroimmune communication in the dorsal root ganglia in chronic pain. Neuroscience Letters, 2020, 735, 135230.	2.1	4
15	Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. Neurobiology of Pain (Cambridge, Mass), 2019, 6, 100032.	2.5	23
16	Role of the immune system in neuropathic pain. Scandinavian Journal of Pain, 2019, 20, 33-37.	1.3	131
17	Pain in Parkinson's disease: new concepts in pathogenesis and treatment. Current Opinion in Neurology, 2019, 32, 579-588.	3.6	61
18	A refined rat primary neonatal microglial culture method that reduces time, cost and animal use. Journal of Neuroscience Methods, 2018, 304, 92-102.	2.5	8

#	Article	IF	Citations
19	GABAB receptors and pain. Neuropharmacology, 2018, 136, 102-105.	4.1	52
20	Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthritis and Cartilage, 2018, 26, 84-94.	1.3	45
21	A novel interaction between CX3CR1 and CCR2 signalling in monocytes constitutes an underlying mechanism for persistent vincristine-induced pain. Journal of Neuroinflammation, 2018, 15, 101.	7.2	41
22	The therapeutic potential of targeting chemokine signalling in the treatment of chronic pain. Journal of Neurochemistry, 2017, 141, 520-531.	3.9	36
23	Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Scientific Reports, 2017, 7, 5447.	3.3	53
24	Spinal mechanisms of neuropathic pain: Is there a P2X4-BDNF controversy?. Neurobiology of Pain (Cambridge, Mass), 2017, 1, 1-5.	2.5	20
25	Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nature Communications, 2017, 8, 1778.	12.8	224
26	The Therapeutic Potential of Monocyte/Macrophage Manipulation in the Treatment of Chemotherapy-Induced Painful Neuropathy. Frontiers in Molecular Neuroscience, 2017, 10, 397.	2.9	35
27	Microglia and chronic pain. Pain, 2016, 157, 1002-1003.	4.2	14
28	Role of extracellular calcitonin gene-related peptide in spinal cord mechanisms of cancer-induced bone pain. Pain, 2016, 157, 666-676.	4.2	27
29	Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 387-396.	2.5	33
30	The Monoiodoacetate Model of Osteoarthritis Pain in the Mouse. Journal of Visualized Experiments, $2016, \ldots$	0.3	81
31	Reduced thermal sensitivity and increased opioidergic tone in the TASTPM mouse model of Alzheimer's disease. Pain, 2016, 157, 2285-2296.	4.2	22
32	Neuron-immune mechanisms contribute to pain in early stages of arthritis. Journal of Neuroinflammation, 2016, 13, 96.	7.2	81
33	Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Research and Therapy, 2016, 18, 7.	3.5	39
34	Chronic Pain: New Insights in Molecular and Cellular Mechanisms. BioMed Research International, 2015, 2015, 1-2.	1.9	8
35	Calcitonin Geneâ€Related Peptide–Expressing Sensory Neurons and Spinal Microglial Reactivity Contribute to Pain States in Collagenâ€Induced Arthritis. Arthritis and Rheumatology, 2015, 67, 1668-1677.	5 . 6	51
36	The Role of G-Protein Receptor 84 in Experimental Neuropathic Pain. Journal of Neuroscience, 2015, 35, 8959-8969.	3.6	48

#	Article	IF	Citations
37	Development of monosodium acetate-induced osteoarthritis and inflammatory pain in ageing mice. Age, 2015, 37, 9792.	3.0	22
38	The Role of Glia in the Spinal Cord in Neuropathic and Inflammatory Pain. Handbook of Experimental Pharmacology, 2015, 227, 145-170.	1.8	199
39	Selective Activation of Microglia Facilitates Synaptic Strength. Journal of Neuroscience, 2015, 35, 4552-4570.	3.6	142
40	Fractalkine/CX3CR1 signaling during neuropathic pain. Frontiers in Cellular Neuroscience, 2014, 8, 121.	3.7	122
41	Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. Journal of Clinical Investigation, 2014, 124, 2023-2036.	8.2	140
42	Astrocytes—Multitaskers in chronic pain. European Journal of Pharmacology, 2013, 716, 120-128.	3.5	50
43	Painâ€like behaviour and spinal changes in the monosodium iodoacetate model of osteoarthritis in <scp>C57Bl</scp> /6 mice. European Journal of Pain, 2013, 17, 514-526.	2.8	77
44	microRNAs in nociceptive circuits as predictors of future clinical applications. Frontiers in Molecular Neuroscience, 2013, 6, 33.	2.9	70
45	Neuropathic pain and cytokines: current perspectives. Journal of Pain Research, 2013, 6, 803.	2.0	244
46	Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nature Communications, 2012, 3, 791.	12.8	228
47	Assessment and treatment of pain in people with dementia. Nature Reviews Neurology, 2012, 8, 264-274.	10.1	270
48	Chemokine mediated neuron–glia communication and aberrant signalling in neuropathic pain states. Current Opinion in Pharmacology, 2012, 12, 67-73.	3.5	93
49	Spinal cathepsin S and fractalkine contribute to chronic pain in the collagenâ€induced arthritis model. Arthritis and Rheumatism, 2012, 64, 2038-2047.	6.7	74
50	Microglial signalling mechanisms: Cathepsin S and Fractalkine. Experimental Neurology, 2012, 234, 283-292.	4.1	118
51	Fractalkine/CX3CR1 Signalling in Chronic Pain and Inflammation. Current Pharmaceutical Biotechnology, 2011, 12, 1707-1714.	1.6	72
52	Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells. Journal of Neuroimmunology, 2011, 234, 19-26.	2.3	40
53	A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor \hat{l}_{\pm} -induced inflammatory hyperalgesia and Freund's complete adjuvant-induced monarthritis. Arthritis and Rheumatism, 2011, 63, 819-829.	6.7	151
54	Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia, 2010, 58, 1710-1726.	4.9	122

#	Article	IF	Citations
55	Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. Journal of Neurochemistry, 2010, 114, 1143-1157.	3.9	124
56	P2X7-Dependent Release of Interleukin- \hat{l}^2 and Nociception in the Spinal Cord following Lipopolysaccharide. Journal of Neuroscience, 2010, 30, 573-582.	3.6	261
57	Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain, 2010, 133, 2549-2564.	7.6	110
58	Cathepsin S Inhibition Attenuates Neuropathic Pain and Microglial Response Associated with Spinal Cord Injury. Open Pain Journal, 2010, 3, 117-122.	0.4	7
59	The Liberation of Fractalkine in the Dorsal Horn Requires Microglial Cathepsin S. Journal of Neuroscience, 2009, 29, 6945-6954.	3.6	188
60	Chemokines and pain mechanisms. Brain Research Reviews, 2009, 60, 125-134.	9.0	241
61	MAP kinase and pain. Brain Research Reviews, 2009, 60, 135-148.	9.0	872
62	Rapid isolation and culture of primary microglia from adult mouse spinal cord. Journal of Neuroscience Methods, 2009, 183, 223-237.	2.5	36
63	Gabapentin reverses microglial activation in the spinal cord of streptozotocinâ€induced diabetic rats. European Journal of Pain, 2009, 13, 807-811.	2.8	127
64	Current Challenges in Glia-Pain Biology. Neuron, 2009, 64, 46-54.	8.1	295
65	Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via transient receptor potential vanilloid 1-dependent and independent mechanisms. Pain, 2009, 141, 135-142.	4.2	93
66	The Cathepsin S/Fractalkine Pair: New Players in Spinal Cord Neuropathic Pain Mechanisms. , 2009, , 455-471.		1
67	Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-Cyanopyrimidines. Part 2. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5280-5284.	2.2	25
68	Spinal changes associated with mechanical hypersensitivity in a model of Guillain–Barré syndrome. Neuroscience Letters, 2008, 437, 98-102.	2.1	34
69	Discovery of Orally Bioavailable Cathepsin S Inhibitors for the Reversal of Neuropathic Pain. Journal of Medicinal Chemistry, 2008, 51, 5502-5505.	6.4	36
70	Phosphatidylinositol 3-Kinase Is a Key Mediator of Central Sensitization in Painful Inflammatory Conditions. Journal of Neuroscience, 2008, 28, 4261-4270.	3.6	131
71	Specific Antinociceptive Activity of Cholest-4-en-3-one, Oxime (TRO19622) in Experimental Models of Painful Diabetic and Chemotherapy-Induced Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 623-632.	2.5	65
72	Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10655-10660.	7.1	410

#	Article	IF	CITATIONS
73	Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain, 2007, 130, 225-234.	4.2	119
74	Role of spinal microglia in rat models of peripheral nerve injury and inflammation. European Journal of Pain, 2007, 11, 223-230.	2.8	213
75	Rapid co-release of interleukin 1? and caspase 1 in spinal cord inflammation. Journal of Neurochemistry, 2006, 99, 868-880.	3.9	97
76	Artemin has potent neurotrophic actions on injured C-fibres. Journal of the Peripheral Nervous System, 2006, $11,330-345$.	3.1	42
77	Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. European Journal of Neuroscience, 2004, 20, 1769-1778.	2.6	138
78	Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opinion on Therapeutic Targets, 2004, 8, 391-399.	3.4	114
79	Pain related behaviour in two models of osteoarthritis in the rat knee. Pain, 2004, 112, 83-93.	4.2	356
80	Release of BDNF and GABA in the dorsal horn of neuropathic rats. European Journal of Neuroscience, 2003, 18, 1169-1174.	2.6	132
81	Basal and activity-induced release of substance P from primary afferent fibres in NK1 receptor knockout mice: evidence for negative feedback. Neuropharmacology, 2003, 45, 1101-1110.	4.1	22
82	A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends in Pharmacological Sciences, 2003, 24, 116-121.	8.7	141
83	The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Molecular and Cellular Neurosciences, 2003, 24, 259-270.	2.2	74
84	GDNF and somatostatin in sensory neurones. Current Opinion in Pharmacology, 2003, 3, 41-45.	3.5	31
85	Mechanism by which Brain-Derived Neurotrophic Factor Increases Dopamine Release from the Rabbit Retina., 2003, 44, 791.		26
86	A novel control mechanism based on GDNF modulation of somatostatin release from sensory neurones. FASEB Journal, 2002, 16, 730-732.	0.5	20
87	BDNF Modulates Sensory Neuron Synaptic Activity by a Facilitation of GABA Transmission in the Dorsal Horn. Molecular and Cellular Neurosciences, 2002, 21, 51-62.	2.2	92
88	Noxious Stimulation Induces Trk Receptor and Downstream ERK Phosphorylation in Spinal Dorsal Horn. Molecular and Cellular Neurosciences, 2002, 21, 684-695.	2.2	121
89	BDNF: a neuromodulator in nociceptive pathways?. Brain Research Reviews, 2002, 40, 240-249.	9.0	189
90	Effect of brain-derived neurotrophic factor on the release of substance P from rat spinal cord. NeuroReport, 2001, 12, 21-24.	1.2	16

#	Article	IF	Citations
91	Brain-Derived Neurotrophic Factor Is Released in the Dorsal Horn by Distinctive Patterns of Afferent Fiber Stimulation. Journal of Neuroscience, 2001, 21, 4469-4477.	3.6	272
92	Intrathecally delivered glial cell line-derived neurotrophic factor produces electrically evoked release of somatostatin in the dorsal horn of the spinal cord. Journal of Neurochemistry, 2001, 78, 221-229.	3.9	22
93	Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. European Journal of Neuroscience, 2000, 12, 139-144.	2.6	60
94	Abnormal substance P release from the spinal cord following injury to primary sensory neurons. European Journal of Neuroscience, 2000, 12, 397-399.	2.6	95
95	Peptide autoreceptors: does an autoreceptor for substance P exist?. Trends in Pharmacological Sciences, 1999, 20, 405-407.	8.7	59
96	NMDA receptor activation modulates evoked release of substance P from rat spinal cord. British Journal of Pharmacology, 1998, 125, 1625-1626.	5.4	62
97	A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain, 1998, 76, 151-157.	4.2	207
98	α-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neuroscience Letters, 1997, 222, 191-194.	2.1	72
99	Nerve Growth Factor- and Neurotrophin-3-Induced Changes in Nociceptive Threshold and the Release of Substance P from the Rat Isolated Spinal Cord. Journal of Neuroscience, 1997, 17, 8459-8467.	3.6	101
100	Nerve Growth Factor Treatment Increases Stimulus-evoked Release of Sensory Neuropeptides in the Rat Spinal Cord. European Journal of Neuroscience, 1997, 9, 1101-1104.	2.6	62
101	Neurotrophic factorsâ€"regulation of neuronal phenotype. Neuroscience Research Communications, 1997, 21, 57-66.	0.2	3
102	GABA, glutamate and substance Pâ€like immunoreactivity release: effects of novel GABA _B antagonists. British Journal of Pharmacology, 1996, 118, 1153-1160.	5.4	61
103	Calcitonin gene-related peptide content, basal outflow and electrically-evoked release from monoarthritic rat spinal cord in vitro. Pain, 1996, 66, 351-358.	4.2	36
104	Effect of interleukin- $\hat{l^2}$ on the release of substance P from rat isolated spinal cord. European Journal of Pharmacology, 1996, 299, 113-118.	3.5	74
105	Evidence for release of glutamic acid, aspartic acid and substance P but not \hat{I}^3 -aminobutyric acid from primary afferent fibres in rat spinal cord. European Journal of Pharmacology, 1996, 302, 27-36.	3.5	28
106	Possible Therapeutic Application of GABAB Receptor Agonists and Antagonists. Clinical Neuropharmacology, 1995, 18, 285-305.	0.7	40
107	Chronic (-)baclofen or CGP 36742 alters GABAB receptor sensitivity in rat brain and spinal cord. NeuroReport, 1995, 6, 399.	1.2	39
108	Effect of the tachykinin NK ₁ receptor antagonists, RP 67580 and SR 140333, on electricallyâ€evoked substance P release from rat spinal cord. British Journal of Pharmacology, 1994, 113, 635-641.	5.4	33

#	ARTICLE	IF	CITATIONS
109	Spinal cord SP release and hyperalgesia in monoarthritic rats: involvement of the GABA _B receptor system. British Journal of Pharmacology, 1994, 113, 1561-1566.	5.4	58
110	Plasticity of GABAB receptor in rat spinal cord detected by autoradiography. European Journal of Pharmacology, 1993, 250, 153-156.	3.5	38
111	GABAB receptor-mediated inhibition of forskolin-stimulated cyclic AMP accumulation in rat spinal cord. Neuroscience Letters, 1993, 158, 189-192.	2.1	17