Renato Benesperi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9238546/publications.pdf

Version: 2024-02-01

471509 501196 1,021 64 17 28 citations h-index g-index papers 65 65 65 1343 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Microclimatic Alteration after Logging Affects the Growth of the Endangered Lichen Lobaria pulmonaria. Plants, 2022, 11, 295.	3.5	4
2	Survival of <i>Xanthoria parietina</i> in simulated space conditions: vitality assessment and spectroscopic analysis. International Journal of Astrobiology, 2022, 21, 137-153.	1.6	4
3	Wood distillate as an alternative bio-based product against lichens on sandstone. International Biodeterioration and Biodegradation, 2022, 170, 105386.	3.9	3
4	Little time left. Microrefuges may fail in mitigating the effects of climate change on epiphytic lichens. Science of the Total Environment, 2022, 825, 153943.	8.0	6
5	Modelling range dynamics of terricolous lichens of the genus Peltigera in the Alps under a climate change scenario. Fungal Ecology, 2021, 49, 101014.	1.6	9
6	Morphological and Chemical Traits of Cladonia Respond to Multiple Environmental Factors in Acidic Dry Grasslands. Microorganisms, 2021, 9, 453.	3.6	6
7	Contrasting multitaxon responses to climate change in Mediterranean mountains. Scientific Reports, 2021, 11, 4438.	3.3	25
8	The lichens of the Majella National Park (Central Italy): an annotated checklist. MycoKeys, 2021, 78, 119-168.	1.9	1
9	Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms, 2021, 9, 766.	3.6	34
10	Revision of the Parmelia saxatilis group in Italy based on morphological, chemical, and molecular data. Phytotaxa, 2021, 512, .	0.3	1
11	Threats and Conservation Strategies for Overlooked Organisms: The Case of Epiphytic Lichens. , 2020, , 1-26.		2
12	The application protocol impacts the effectiveness of biocides against lichens. International Biodeterioration and Biodegradation, 2020, 155, 105105.	3.9	11
13	Vitality and Growth of the Threatened Lichen Lobaria pulmonaria (L.) Hoffm. in Response to Logging and Implications for Its Conservation in Mediterranean Oak Forests. Forests, 2020, 11, 995.	2.1	9
14	Contrasting Environmental Drivers Determine Biodiversity Patterns in Epiphytic Lichen Communities along a European Gradient. Microorganisms, 2020, 8, 1913.	3.6	11
15	Biomonitoring Studies in Geothermal Areas: A Review. Frontiers in Environmental Science, 2020, 8, .	3.3	6
16	Range shifts of native and invasive trees exacerbate the impact of climate change on epiphyte distribution: The case of lung lichen and black locust in Italy. Science of the Total Environment, 2020, 735, 139537.	8.0	18
17	Disentangling functional trait variation and covariation in epiphytic lichens along a continent-wide latitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192862.	2.6	22
18	Black pine (Pinus nigra) barks: A critical evaluation of some sampling and analysis parameters for mercury biomonitoring purposes. Ecological Indicators, 2020, 112, 106110.	6.3	10

#	Article	IF	CITATIONS
19	Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. International Journal of Environmental Research and Public Health, 2020, 17, 2353.	2.6	11
20	Patterns of change in \hat{l}^{\pm} and \hat{l}^{2} taxonomic and phylogenetic diversity in the secondary succession of semi-natural grasslands in the Northern Apennines. PeerJ, 2020, 8, e8683.	2.0	7
21	Thorn, spine and prickle patterns in the Italian flora. Plant Biosystems, 2019, 153, 118-133.	1.6	13
22	Cross Taxon Congruence Between Lichens and Vascular Plants in a Riparian Ecosystem. Diversity, 2019, 11, 133.	1.7	6
23	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	1.6	48
24	The multi-purpose role of hairiness in the lichens of coastal environments: Insights from Seirophora villosa (Ach.) Frödén. Plant Physiology and Biochemistry, 2019, 141, 398-406.	5.8	10
25	New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere, 2019, 10, 136.	2.3	30
26	High-light stress in wet and dry thalli of the endangered Mediterranean lichen Seirophora villosa (Ach.) Frödén: does size matter?. Mycological Progress, 2019, 18, 463-470.	1.4	11
27	Could Hair-Lichens of High-Elevation Forests Help Detect the Impact of Global Change in the Alps?. Diversity, 2019, 11, 45.	1.7	12
28	Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods. Environmental Monitoring and Assessment, 2019, 191, 260.	2.7	8
29	Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Science of the Total Environment, 2019, 666, 22-30.	8.0	15
30	Treatment by glyphosate-based herbicide allowed recovering native species after <i>Oxalis pes-caprae</i> L. invasion: indications from a Mediterranean island. Plant Biosystems, 2019, 153, 651-659.	1.6	5
31	Retaining unlogged patches in Mediterranean oak forests may preserve threatened forest macrolichens. IForest, 2019, 12, 187-192.	1.4	9
32	Impact of forest management on threatened epiphytic macrolichens: evidence from a Mediterranean mixed oak forest (Italy). IForest, 2019, 12, 383-388.	1.4	12
33	Background element content of the lichen Pseudevernia furfuracea: A supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 2018, 622-623, 282-292.	8.0	16
34	A probable anthropic origin ofNerium oleanderL. (Apocynaceae) population in Montecristo island (Italy, Tuscany): evidence from loci polymorphism and ISSR analysis. Caryologia, 2018, 71, 50-57.	0.3	4
35	Successful conservation of the endangered forest lichen Lobaria pulmonaria requires knowledge of fine-scale population structure. Fungal Ecology, 2018, 33, 65-71.	1.6	18
36	Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environmental Science and Pollution Research, 2017, 24, 8004-8016.	5.3	18

#	Article	IF	CITATIONS
37	Species- and site-specific efficacy of commercial biocides and application solvents against lichens. International Biodeterioration and Biodegradation, 2017, 123, 127-137.	3.9	35
38	Climate change fosters the decline of epiphytic Lobaria species in Italy. Biological Conservation, 2016, 201, 377-384.	4.1	48
39	Assessment of the conservation status of the mat-forming lichens Cladonia subgenus Cladina in Italy. Plant Biosystems, 2016, 150, 1010-1022.	1.6	9
40	Different components of plant diversity suggest the protection of a large area for the conservation of a riparian ecosystem. Biologia (Poland), 2015, 70, 1033-1041.	1.5	3
41	Plant species loss and community nestedness after leguminous tree Acacia pycnantha invasion in a Mediterranean ecosystem. Folia Geobotanica, 2015, 50, 229-238.	0.9	11
42	Patterns of \hat{l}^2 -diversity and similarity reveal biotic homogenization of epiphytic lichen communities associated with the spread of black locust forests. Fungal Ecology, 2015, 14, 1-7.	1.6	20
43	Local dispersal dynamics determine the occupied niche of the red-listed lichen Seirophora villosa (Ach.) FrA¶dén in a Mediterranean Juniperus shrubland. Fungal Ecology, 2015, 13, 77-82.	1.6	10
44	Biological effects of ammonia released from a composting plant assessed with lichens. Environmental Science and Pollution Research, 2014, 21, 5861-5872.	5.3	16
45	Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment, 2014, 497-498, 491-498.	8.0	80
46	Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island, second stage: toward a complete restoration. Biologia (Poland), 2014, 69, 977-985.	1.5	6
47	Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biological Conservation, 2014, 179, 129-138.	4.1	47
48	Human Disturbance Threats the Red-Listed Macrolichen Seirophora villosa (Ach.) Frödén in Coastal Juniperus Habitats: Evidence From Western Peninsular Italy. Environmental Management, 2013, 52, 939-945.	2.7	10
49	Patterns and drivers of βâ€diversity and similarity of <i><scp>L</scp>obaria pulmonaria</i> communities in <scp>I</scp> talian forests. Journal of Ecology, 2013, 101, 493-505.	4.0	35
50	Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodiversity and Conservation, 2012, 21, 3555-3568.	2.6	102
51	Can we compare lichen diversity data? A test with skilled teams. Ecological Indicators, 2012, 23, 509-516.	6.3	19
52	Mature non-native black-locust (Robinia pseudoacacia L.) forest does not regain the lichen diversity of the natural forest. Science of the Total Environment, 2012, 421-422, 197-202.	8.0	28
53	Epiphytic lichen communities in chestnut stands in Central-North Italy. Biologia (Poland), 2012, 67, 61-70.	1.5	12
54	Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island. Biologia (Poland), 2011, 66, 638-644.	1.5	12

#	Article	IF	CITATIONS
55	Rapid biodiversity assessment in lichen diversity surveys: implications for quality assurance. Journal of Environmental Monitoring, 2009, 11, 730.	2.1	35
56	New records for lichen regional floras of Italy. Webbia, 2009, 64, 153-158.	0.3	3
57	Differential land snail damage to selected species of the lichen genus Peltigera. Biochemical Systematics and Ecology, 2004, 32, 127-138.	1.3	23
58	The lichen genus Neofuscelia (Ascomycota, Parmeliaceae) in Italy. Lichenologist, 2003, 35, 377-385.	0.8	8
59	Contributo alla flora lichenica dell'anticlinale di Monsummano (Toscana, Italia centrale). Webbia, 2000, 55, 339-345.	0.3	O
60	Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 11. Italian Botanist, 0, 11, 45-61.	0.0	2
61	Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 7. Italian Botanist, 0, 7, 69-91.	0.0	3
62	Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 8. Italian Botanist, 0, 8, 47-62.	0.0	3
63	Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 13. Italian Botanist, 0, 13, 1-17.	0.0	2
64	Towards a Red List of the terricolous lichens of Italy. Plant Biosystems, 0, , 1-4.	1.6	3