Michiya Matsusaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano, 2017, 11, 6703-6716.	14.6	325
2	Rapid Construction of Threeâ€Dimensional Multilayered Tissues with Endothelial Tube Networks by the Cellâ€Accumulation Technique. Advanced Materials, 2011, 23, 3506-3510.	21.0	241
3	Enzyme-Responsive Release of Encapsulated Proteins from Biodegradable Hollow Capsules. Biomacromolecules, 2006, 7, 2715-2718.	5.4	197
4	Fabrication of Cellular Multilayers with Nanometer-Sized Extracellular Matrix Films. Angewandte Chemie - International Edition, 2007, 46, 4689-4692.	13.8	185
5	Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomaterialia, 2018, 78, 296-307.	8.3	179
6	Fabrication of Temperatureâ€Responsive Bending Hydrogels with a Nanostructured Gradient. Advanced Materials, 2008, 20, 2080-2083.	21.0	167
7	Threeâ€Dimensional Human Tissue Chips Fabricated by Rapid and Automatic Inkjet Cell Printing. Advanced Healthcare Materials, 2013, 2, 534-539.	7.6	156
8	Layerâ€byâ€Layer Assembly Through Weak Interactions and Their Biomedical Applications. Advanced Materials, 2012, 24, 454-474.	21.0	155
9	Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 2021, 12, 5059.	12.8	141
10	Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomaterialia, 2016, 33, 110-121.	8.3	106
11	Novel Functional Biodegradable Polymer IV:Â pH-Sensitive Controlled Release of Fibroblast Growth Factor-2 from a Poly(γ-glutamic acid)-Sulfonate Matrix for Tissue Engineering. Biomacromolecules, 2005, 6, 3351-3356.	5.4	98
12	The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials, 2007, 28, 2729-2737.	11.4	98
13	Control of Cell Surface and Functions by Layer-by-Layer Nanofilms. Langmuir, 2010, 26, 5670-5678.	3.5	94
14	Development of <i>In Vitro</i> Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Engineering - Part C: Methods, 2018, 24, 56-67.	2.1	88
15	Stably-dispersed and Surface-functional Bionanoparticles Prepared by Self-assembling Amphipathic Polymers of Hydrophilic Poly(γ-glutamic acid) Bearing Hydrophobic Amino Acids. Chemistry Letters, 2004, 33, 398-399.	1.3	87
16	Three-dimensional cell culture technique and pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 95-103.	13.7	86
17	Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials, 2014, 35, 4739-4748.	11.4	84
18	Effectiveness of Nanometer-Sized Extracellular Matrix Layer-by-Layer Assembled Films for a Cell Membrane Coating Protecting Cells from Physical Stress. Langmuir, 2013, 29, 7362-7368.	3.5	79

ΜΙCΗΙYA MATSUSAKI

5

#	Article	IF	CITATIONS
19	Photo-Cross-Linking and Cleavage Induced Reversible Size Change of Bio-Based Nanoparticles. Macromolecules, 2008, 41, 8167-8172.	4.8	73
20	Locally Controlled Release of Basic Fibroblast Growth Factor from Multilayered Capsules. Biomacromolecules, 2008, 9, 2202-2206.	5.4	73
21	Thermotropic Liquid-Crystalline Polymer Derived from Natural Cinnamoyl Biomonomers. Macromolecular Rapid Communications, 2004, 25, 673-677.	3.9	72
22	Functional multilayered capsules for targeting and local drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 1207-1217.	5.0	72
23	Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. Journal of Biomedical Materials Research - Part A, 2015, 103, 3386-3396.	4.0	70
24	Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application. Biomaterials, 2016, 109, 12-22.	11.4	63
25	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid andD,L-lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	2.6	62
26	Preparation of Biodegradable Hollow Nanocapsules by Silica Template Method. Chemistry Letters, 2004, 33, 1552-1553.	1.3	61
27	PEG Brush Peptide Nanospheres with Stealth Properties and Chemical Functionality. Macromolecules, 2007, 40, 6385-6392.	4.8	61
28	Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomaterials Science, 2018, 6, 1962-1975.	5.4	61
29	Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of Colloid and Interface Science, 2019, 536, 112-126.	9.4	59
30	Disulfideâ€Crosslinked Electrospun Poly(<i>γ</i> â€glutamic acid) Nonwovens as Reductionâ€Responsive Scaffolds. Macromolecular Bioscience, 2009, 9, 568-574.	4.1	56
31	3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomaterialia, 2019, 84, 194-207.	8.3	56
32	Oneâ€Step Photoactivation of a Dualâ€Functionalized Bioink as Cell Carrier and Cartilageâ€Binding Glue for Chondral Regeneration. Advanced Healthcare Materials, 2020, 9, e1901792.	7.6	56
33	Multilayered Blood Capillary Analogs in Biodegradable Hydrogels for In Vitro Drug Permeability Assays. Advanced Functional Materials, 2013, 23, 1736-1742.	14.9	51
34	Novel Functional Biodegradable Polymer: Synthesis and Anticoagulant Activity of Poly(γ-Glutamic) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
35	Controlled hydrophobic/hydrophilic chitosan: colloidal phenomena and nanosphere formation. Colloid and Polymer Science, 2004, 282, 337-342.	2.1	50

Rapid deswelling of semi-IPNs with nanosized tracts in response to pH and temperature. Journal of Controlled Release, 2006, 110, 387-394. 36 9.9 50

MICHIYA MATSUSAKI

#	Article	IF	CITATIONS
37	Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 775-783.	3.5	49
38	Enhanced effects of lithocholic acid incorporation into liquid-crystalline biopolymer poly(coumaric) Tj ETQq0 0	0 rgBT /Ove	erlo <u>ç</u> k 10 Tf 50
39	InÂvitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials, 2018, 179, 144-155.	11.4	44
40	Synthesis and properties of coumaric acid derivative homo-polymers. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 75-85.	3.5	43
41	In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Integrative Biology (United Kingdom), 2012, 4, 1207.	1.3	43
42	Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathogens, 2019, 15, e1008124.	4.7	42
43	Morphological and Histological Evaluations of 3D-Layered Blood Vessel Constructs Prepared by Hierarchical Cell Manipulation. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 63-79.	3.5	40
44	Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery. Biochemical and Biophysical Research Communications, 2012, 419, 32-37.	2.1	40
45	Quantitative 3D Analysis of Nitric Oxide Diffusion in a 3D Artery Model Using Sensor Particles. Angewandte Chemie - International Edition, 2011, 50, 7557-7561.	13.8	38
46	Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cellâ€Accumulation Technology. Small, 2018, 14, 1701521.	10.0	38
47	Photo-tunable protein release from biodegradable nanoparticles composed of cinnamic acid derivatives. Journal of Controlled Release, 2011, 149, 182-189.	9.9	37
48	Development of Photoreactive Degradable Branched Polyesters with High Thermal and Mechanical Properties. Biomacromolecules, 2009, 10, 766-772.	5.4	36
49	Photo-Cross-Linking Induces Size Change and Stealth Properties of Water-Dispersible Cinnamic Acid Derivative Nanoparticles. Bioconjugate Chemistry, 2009, 20, 1917-1923.	3.6	35
50	Biodegradable LC Oligomers with Cranked Branching Points Form Highly Oriented Fibrous Scaffold for Cytoskeletal Orientation. Chemistry of Materials, 2006, 18, 6220-6226.	6.7	34
51	In vitro placenta barrier model using primary human trophoblasts, underlying connective tissue and vascular endothelium. Biomaterials, 2019, 192, 140-148.	11.4	33
52	Novel functional biodegradable polymer. III. The construction of poly(γ-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity. Journal of Biomedical Materials Research - Part A, 2005, 73A, 485-491.	4.0	32
53	Preparation and Unique pHâ€Responsive Properties of Novel Biodegradable Nanocapsules Composed of Poly(γâ€glutamic acid) and Chitosan as Weak Polyelectrolytes. Macromolecular Bioscience, 2010, 10, 271-277.	4.1	32
54	Three-dimensional constructs induce high cellular activity: Structural stability and the specific production of proteins and cytokines. Biochemical and Biophysical Research Communications, 2010, 402, 153-157.	2.1	32

#	Article	IF	CITATIONS
55	Fabrication of in vitro three-dimensional multilayered blood vessel model using human endothelial and smooth muscle cells and high-strength PEG hydrogel. Journal of Bioscience and Bioengineering, 2013, 116, 231-234.	2.2	32
56	Nanometerâ€sized extracellular matrix coating on polymerâ€based scaffold for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 94-103.	4.0	32
57	Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness. Biomaterials, 2019, 192, 355-367.	11.4	32
58	Development of Three-Dimensional Tissue Models Based on Hierarchical Cell Manipulation Using Nanofilms. Bulletin of the Chemical Society of Japan, 2012, 85, 401-414.	3.2	31
59	Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique. Microscopy (Oxford,) Tj ETQq1 1	0.7 8\$ 314	rg₿ ð /Overloo
60	Liquefied Microcapsules as Dualâ€Microcarriers for 3D+3D Bottomâ€Up Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1901221.	7.6	30
61	Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration. Cyborg and Bionic Systems, 2021, 2021, .	7.9	30
62	Novel Functional Biodegradable Polymer II: Fibroblast Growth Factor-2 Activities of Poly(γ-glutamic) Tj ETQq0 () 0 ₅₉ BT /C	overlock 10 Tf
63	Scaffold-Free Tissue-Engineered Construct–Hydroxyapatite Composites Generated by an Alternate Soaking Process: Potential for Repair of Bone Defects. Tissue Engineering - Part A, 2009, 15, 55-63.	3.1	29
64	Survival and structural evaluations of three-dimensional tissues fabricated by the hierarchical cell manipulation technique. Acta Biomaterialia, 2013, 9, 4698-4706.	8.3	29
65	Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Experimental Neurology, 2014, 261, 386-395.	4.1	29
66	Aggregationâ€Induced Singlet Oxygen Generation: Functional Fluorophore and Anthrylphenylene Dyad Selfâ€Assemblies. Chemistry - A European Journal, 2018, 24, 636-645.	3.3	29
67	Seeing Elastin: A Near-Infrared Zwitterionic Fluorescent Probe for InÂVivo Elastin Imaging. CheM, 2018, 4, 1128-1138.	11.7	28
68	Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohydrate Polymers, 2018, 197, 375-384.	10.2	28
69	Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chemistry of Materials, 2005, 17, 2484-2486.	6.7	27
70	Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating. Biochemical and Biophysical Research Communications, 2016, 474, 515-521.	2.1	27
71	Layer-by-layer assembly of nanofilms to control cell functions. Polymer Chemistry, 2019, 10, 2960-2974.	3.9	27

72Nanosphere Induced Gene Expression in Human Dendritic Cells. Nano Letters, 2005, 5, 2168-2173.9.126

Μιςμιγα Ματςυςακι

#	Article	IF	CITATIONS
73	Rapid and Precise Release from Nano-Tracted Poly(N-isopropylacrylamide) Hydrogels Containing Linear Poly(acrylic acid). Macromolecular Bioscience, 2006, 6, 959-965.	4.1	26
74	Adipose tissue engineering. , 2020, , 393-423.		26
75	Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication, 2022, 14, 034104.	7.1	26
76	Construction of three-dimensional liver tissue models by cell accumulation technique and maintaining their metabolic functions for long-term culture without medium change. Journal of Biomedical Materials Research - Part A, 2015, 103, 1554-1564.	4.0	24
77	One-Step Advanced Preparation of Surface-Functional Peptide Nanospheres by the Polymerization ofl-PhenylalanineN-Carboxyanhydride with Dual Initiators. Langmuir, 2006, 22, 1396-1399.	3.5	23
78	Time-modulated Release of Multiple Proteins from Enzyme-responsive Multilayered Capsules. Chemistry Letters, 2008, 37, 238-239.	1.3	23
79	Anisotropic Mechanical Properties of Collagen Hydrogels Induced by Uniaxial-Flow for Ocular Applications. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1427-1442.	3.5	23
80	Collagen Microfibers Induce Blood Capillary Orientation and Open Vascular Lumen. Advanced Biology, 2020, 4, e2000038.	3.0	23
81	Heterotypic 3D pancreatic cancer model with tunable proportion of fibrotic elements. Biomaterials, 2020, 251, 120077.	11.4	23
82	Resolution of 3D bioprinting inside bulk gel and granular gel baths. Soft Matter, 2021, 17, 8769-8785.	2.7	23
83	Protein nanoarrays on a highly-oriented lamellar surface. Chemical Communications, 2010, 46, 1911-1913.	4.1	22
84	Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies. Atherosclerosis, 2014, 233, 590-600.	0.8	21
85	Unique Sizeâ€Change Behavior of Photoâ€Crosslinked Cinnamic Acid Derivative Nanoparticles during Hydrolytic Degradation. Macromolecular Bioscience, 2009, 9, 248-255.	4.1	19
86	Biocompatible and Highly Sensitive Nitric Oxide Sensor Particles Prepared by Layer-by-layer Assembly. Chemistry Letters, 2010, 39, 42-43.	1.3	19
87	Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polymer Journal, 2014, 46, 524-536.	2.7	19
88	Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy. Langmuir, 2016, 32, 3803-3810.	3.5	19
89	Desmoplastic Reaction in 3Dâ€Pancreatic Cancer Tissues Suppresses Molecular Permeability. Advanced Healthcare Materials, 2017, 6, 1700057.	7.6	19
90	Self-Assembling Bionanoparticles of Poly(ε-Lysine) Bearing Cholesterol as aBiomesogen. Biomacromolecules, 2005, 6, 2374-2379.	5.4	18

ΜΙCΗΙYA ΜΑΤSUSAKI

#	Article	IF	CITATIONS
91	Fabrication and enzymatic degradation of fibronectin-based ultrathin films. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1565-1573.	3.5	18
92	Highâ€Throughput Blood―and Lymphâ€Capillaries with Openâ€Ended Pores Which Allow the Transport of Drugs and Cells. Advanced Healthcare Materials, 2016, 5, 1969-1978.	7.6	18
93	Scaffoldâ€Mediated 2D Cellular Orientations for Construction of Three Dimensionally Engineered Tissues Composed of Oriented Cells and Extracellular Matrices. Advanced Functional Materials, 2009, 19, 1001-1007.	14.9	17
94	Mechanism of high thermal stability of commercial polyesters and polyethers conjugated with bioâ€based caffeic acid. Journal of Polymer Science Part A, 2011, 49, 3152-3162.	2.3	17
95	The construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces. RSC Advances, 2014, 4, 46141-46144.	3.6	17
96	3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochemical and Biophysical Research Communications, 2015, 457, 363-369.	2.1	17
97	Transplantation of three-dimensional artificial human vascular tissues fabricated using an extracellular matrix nanofilm-based cell-accumulation technique. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1303-1307.	2.7	17
98	Polyelectrolyte multilayers prepared on hydrogel surfaces. Journal of Polymer Science Part A, 2005, 43, 1062-1067.	2.3	16
99	Photoreactive Polylactide Nanoparticles by the Terminal Conjugation of Biobased Caffeic Acid. Langmuir, 2009, 25, 10567-10574.	3.5	16
100	Physical and Specific Crosslinking of Collagen Fibers by Supramolecular Nanogelators. Advanced Materials, 2011, 23, 2957-2961.	21.0	16
101	Microfluidic perfusion culture system for multilayer artery tissue models. Biomicrofluidics, 2014, 8, 064113.	2.4	16
102	Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy. Biochemical and Biophysical Research Communications, 2014, 451, 107-111.	2.1	16
103	Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 2015, 47, 391-399.	2.7	16
104	Construction of artificial human peritoneal tissue by cell-accumulation technique and its application for visualizing morphological dynamics of cancer peritoneal metastasis. Biochemical and Biophysical Research Communications, 2017, 494, 213-219.	2.1	16
105	Fabrication of Perfusable Pseudo Blood Vessels by Controlling Sol–Gel Transition of Gellan Gum Templates. ACS Biomaterials Science and Engineering, 2019, 5, 5637-5643.	5.2	16
106	Fabrication of Artificial Nanobasement Membranes for Cell Compartmentalization in 3D Tissues. Small, 2020, 16, e1907434.	10.0	16
107	Preparation of Biodegradable Peptide Nanospheres with Hetero PEG Brush Surfaces. Macromolecular Bioscience, 2014, 14, 142-150.	4.1	14
108	Interstitial flow regulates inÂvitro three-dimensional self-organized brain micro-vessels. Biochemical and Biophysical Research Communications, 2020, 533, 600-606.	2.1	14

Μιςμιγα Ματςυςακι

#	Article	IF	CITATIONS
109	An in vitro self-organized three-dimensional model of the blood-brain barrier microvasculature. Biomedical Materials (Bristol), 2021, 16, 015006.	3.3	14
110	Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 456-461.	3.4	13
111	Control of Cell–Cell Distance and Cell Densities in Millimeter-Sized 3D Tissues Constructed by Collagen Nanofiber Coating Techniques. ACS Biomaterials Science and Engineering, 2015, 1, 639-645.	5.2	13
112	In vitro fabrication and application of engineered vascular hydrogels. Polymer Journal, 2020, 52, 871-881.	2.7	13
113	A Nearâ€Infrared Organic Fluorescent Probe for Broad Applications for Blood Vessels Imaging by Highâ€Throughput Screening via 3Dâ€Blood Vessel Models. Small Methods, 2021, 5, e2100338.	8.6	13
114	CXCL12 promotes CCR7 ligand–mediated breast cancer cell invasion and migration toward lymphatic vessels. Cancer Science, 2022, 113, 1338-1351.	3.9	13
115	Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Materials Today Bio, 2022, 14, 100232.	5.5	13
116	One-step delivery of a functional multi-layered cell sheet using a thermally expandable hydrogel with controlled presentation of cell adhesive proteins. Biofabrication, 2018, 10, 025001.	7.1	12
117	Three-Dimensional in vitro Models of Healthy and Tumor Brain Microvasculature for Drug and Toxicity Screening. Frontiers in Toxicology, 2021, 3, 656254.	3.1	12
118	Cancer-microenvironment triggered self-assembling therapy with molecular blocks. Materials Horizons, 2021, 8, 1216-1221.	12.2	12
119	Physical adsorption of human thrombomodulin (ART-123) onto polymeric biomaterials for developing an antithrombogenic blood-contacting material. Journal of Biomedical Materials Research - Part A, 2008, 84A, 1-9.	4.0	11
120	Complete surface control of peptide nanospheres with detachable and attachable polymer brush layers. Chemical Communications, 2010, 46, 7025.	4.1	11
121	Use of Threeâ€Ðimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angewandte Chemie - International Edition, 2016, 55, 4461-4466.	13.8	11
122	Pharmaceutical and Medical Applications of Poly-Gamma-Glutamic Acid. Microbiology Monographs, 2010, , 119-153.	0.6	10
123	Control of Cellular Inflammation by Layer-by-layer Nanofilms through Different Driving Forces. Chemistry Letters, 2012, 41, 523-524.	1.3	10
124	Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells. Biochemical and Biophysical Research Communications, 2012, 420, 662-665.	2.1	10
125	Dynamic Nanoâ€Interfaces Enable Harvesting of Functional 3Dâ€Engineered Tissues. Advanced Healthcare Materials, 2015, 4, 1164-1168.	7.6	10
126	Structural and Viscoelastic Properties of Layer-by-Layer Extracellular Matrix (ECM) Nanofilms and Their Interactions with Living Cells. ACS Biomaterials Science and Engineering, 2015, 1, 816-824.	5.2	10

ΜΙCΗΙYA ΜΑΤSUSAKI

#	Article	IF	CITATIONS
127	Three-dimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers. Biochemical and Biophysical Research Communications, 2015, 456, 392-397.	2.1	10
128	Extracellular Matrix Microfiber Papers for Constructing Multilayered 3D Composite Tissues. ACS Biomaterials Science and Engineering, 2019, 5, 5610-5614.	5.2	10
129	Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Analytical Chemistry, 2021, 93, 14409-14416.	6.5	10
130	Novel Guglielmi detachable coils (GDCs) for the treatment of brain aneurysms.In vitro study of hydroxyapatite coating on Pt plate as GDCs model. Journal of Biomedical Materials Research Part B, 2003, 66B, 429-438.	3.1	9
131	Three-Dimensional Tissue Models Constructed by Cells with Nanometer- or Micrometer-Sized Films on the Surfaces. Chemical Record, 2016, 16, 783-796.	5.8	9
132	Development of a three-dimensional blood-brain barrier network with opening capillary structures for drug transport screening assays. Materials Today Bio, 2022, 15, 100324.	5.5	9
133	Vascular Endothelial Growth Factor Incorporated Multilayer Film Induces Preangiogenesis in Endothelial Cells. ACS Biomaterials Science and Engineering, 2018, 4, 1833-1842.	5.2	8
134	Development of a drug screening system using three-dimensional cardiac tissues containing multiple cell types. Scientific Reports, 2021, 11, 5654.	3.3	8
135	Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro. Processes, 2021, 9, 45.	2.8	8
136	Biomacromoleculeâ€Fueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
137	Thermally stable and photoreactive polylactides by the terminal conjugation of bio-based caffeic acid. Chemical Communications, 2008, , 3918.	4.1	7
138	Threeâ€dimensional cultured tissue constructs that imitate human living tissue organization for analysis of tumor cell invasion. Journal of Biomedical Materials Research - Part A, 2019, 107, 292-300.	4.0	7
139	Fabrication of Blood Capillary Models for Live Imaging Microarray Analysis. Micromachines, 2020, 11, 727.	2.9	7
140	Effects of radiofrequency and ultrasound on the turnover rate of skin aging components (skin) Tj ETQq0 0 0 rgBT Research Communications, 2020, 525, 73-79.	/Overlock 2.1	10 Tf 50 22 7
141	High-throughput drug screening models of mature adipose tissues which replicate the physiology of patients' Body Mass Index (BMI). Bioactive Materials, 2022, 7, 227-241.	15.6	7
142	Self-Assembled Structure of Peptide Nanospheres Induces High Stability against Hydrolysis and Sterilization. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1035-1048.	3.5	6
143	Cell—Cell Crosslinking by Bioâ€Molecular Recognition of Heparinâ€Based Layerâ€byâ€Layer Nanofilms. Macromolecular Bioscience, 2015, 15, 312-317.	4.1	6
144	Control of vascular network location in millimeter-sized 3D-tissues by micrometer-sized collagen coated cells. Biochemical and Biophysical Research Communications, 2016, 472, 131-136.	2.1	6

ΜΙCΗΙYA ΜΑΤSUSAKI

#	Article	IF	CITATIONS
145	Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups. Journal of Electronic Materials, 2016, 45, 2388-2394.	2.2	6
146	Transplantation of artificial human lymphatic vascular tissues fabricated using a cellâ€accumulation technique and their engraftment in mouse tissue with vascular remodelling. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1501-e1510.	2.7	6
147	Dynamic analysis of <i>Porphyromonas gingivalis</i> invasion into blood capillaries during the infection process in host tissues using a vascularized three-dimensional human gingival model. Biomaterials Science, 2021, 9, 6574-6583.	5.4	6
148	Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of coxsackievirus and adenovirus receptor. Cellular Microbiology, 2021, 23, e13388.	2.1	6
149	One-step Preparation of Cationic Sugar–Peptide Nanospheres Using the Water-soluble Chitosan-initiated Polymerization of <scp>I</scp> -Phenylalanine- <i>N</i> -carboxylic Anhydride. Chemistry Letters, 2008, 37, 1262-1263.	1.3	5
150	Development of a Collagen Hydrogel with High Mechanical Strength by a Simple Orientation Method for Triple-helix. Chemistry Letters, 2008, 37, 1254-1255.	1.3	5
151	Enhancement of the blood compatibility of dialyzer membranes by the physical adsorption of human thrombomodulin (ARTâ€123). Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 291-297.	3.4	5
152	Sustainable Release of Paclitaxel from Biodegradable Poly(γ-glutamic acid) Nanoparticles for Treatment of Atherosclerosis. Chemistry Letters, 2014, 43, 1767-1769.	1.3	5
153	Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization ex vivo. Journal of Biotechnology, 2018, 276-277, 46-53.	3.8	5
154	Fabrication Methods of Sustainable Hydrogels. , 2019, , 355-386.		5
155	Three-Dimensional Assembly of Multilayered Tissues Using Water Transfer Printing. Journal of Robotics and Mechatronics, 2013, 25, 690-697.	1.0	5
156	Improvement of Blood Compatibility on Polysulfone–Polyvinylpyrrolidone Blend Films as a Model Membrane of Dialyzer by Physical Adsorption of Recombinant Soluble Human Thrombomodulin (ART-123). Journal of Biomaterials Science, Polymer Edition, 2012, 23, 593-608.	3.5	4
157	Tissue Engineering: Three-Dimensional Human Tissue Chips Fabricated by Rapid and Automatic Inkjet Cell Printing (Adv. Healthcare Mater. 4/2013). Advanced Healthcare Materials, 2013, 2, 533-533.	7.6	4
158	Inhibitory effect of carbonyl reductase 1 against peritoneal progression of ovarian cancer: evaluation by ex vivo 3D-human peritoneal model. Molecular Biology Reports, 2019, 46, 4685-4697.	2.3	4
159	Enhancing Photostability of a Coumarin Dye by Selfâ€inclusion into a Cyclodextrin Cavity in Aqueous Solution and Living Cells. Asian Journal of Organic Chemistry, 2020, 9, 2112-2115.	2.7	4
160	In Situ Cross-Linking of Artificial Basement Membranes in 3D Tissues and Their Size-Dependent Molecular Permeability. Biomacromolecules, 2020, 21, 4923-4932.	5.4	4
161	Development of temperature dependent oxygen releasable nanofilm by modulating oxidation state of myoglobin. Chemical Communications, 2021, 57, 5131-5134.	4.1	4
162	Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Scientific Reports, 2021, 11, 17989.	3.3	4

ΜΙCΗΙYA MATSUSAKI

#	Article	IF	CITATIONS
163	Development of Thick and Highly Cell-Incorporated Engineered Tissues by Hydrogel Template Approach with Basic Fibroblast Growth Factor or Ascorbic Acid. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 415-428.	3.5	3
164	Effect of Degree of Branching on Properties of Photosensitive Nanoparticles as Drugâ€Đelivery Carriers. Macromolecular Chemistry and Physics, 2012, 213, 2157-2164.	2.2	3
165	Three-Dimensional Assembly of Multilayered Tissues. Procedia CIRP, 2013, 5, 201-204.	1.9	3
166	Safe Control of Construction–Deconstruction of High-density PEG Brushes on the Surface of Peptide Nanospheres by Thermally Induced Shrinkage of PEG–SS–PEG. Chemistry Letters, 2013, 42, 344-346.	1.3	3
167	A Four-Dimensional Organoid System to Visualize Cancer Cell Vascular Invasion. Biology, 2020, 9, 361.	2.8	3
168	Regulation of Chondrocyte Differentiation by Changing Intercellular Distances Using Type II Collagen Microfibers. ACS Biomaterials Science and Engineering, 2020, 6, 5711-5719.	5.2	3
169	Preparation of Reduction-sensitive Nanogels with a Large Swelling Capacity by a Surfactant-free Precipitation Method. Chemistry Letters, 2010, 39, 1184-1185.	1.3	2
170	LbL Assemblies Using van der Waals or Affinity Interactions and Their Applications. , 2012, , 99-133.		2
171	Fabrication of Cell–Hydroxyapatite Nanocrystal Composites Assisted with Layer-by-layer Nanometer-sized Extracellular Matrix Films on Individual Stem Cells. Chemistry Letters, 2015, 44, 1714-1716.	1.3	2
172	Analysis of Thickness and Roughness Effects of Artificial Basement Membranes on Endothelial Cell Functions. Analytical Sciences, 2021, 37, 491-495.	1.6	2
173	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D,Lâ€lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	2.6	2
174	Blood–brain barrier tissue engineering. , 2020, , 425-439.		2
175	Development of a Collagen Hydrogel with High Mechanical Strength by a Simple Orientation Method for Triple-helix. Chemistry Letters, 2009, 38, 936-936.	1.3	1
176	Evaluation system for mechanobiology of three-dimensional tissue multilayered in vitro. , 2015, , .		1
177	Use of Threeâ€Dimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angewandte Chemie, 2016, 128, 4537-4542.	2.0	1
178	Preparation of Extracellular Matrix Paper and Construction of Multiâ€Layered 3D Tissue Model. Current Protocols in Cell Biology, 2020, 88, e112.	2.3	1
179	Capillary Alignment: Collagen Microfibers Induce Blood Capillary Orientation and Open Vascular Lumen (Adv. Biosys. 5/2020). Advanced Biology, 2020, 4, 2070052.	3.0	1
180	The Cell Line-Dependent Diversity in Initial Morphological Dynamics of Pancreatic Cancer Cell Peritoneal Metastasis Visualized by an Artificial Human Peritoneal Model. Journal of Surgical Research, 2021, 261, 351-360.	1.6	1

#	Article	IF	CITATIONS
181	Measurement of low-grade inflammation of the esophageal mucosa with electrical conductivity shows promise in assessing PPI responsiveness in patients with GERD. American Journal of Physiology - Renal Physiology, 2021, 321, G29-G40.	3.4	1
182	A unique <i>ex vivo</i> tumor model: 3D cocultured system with cancer and stromal cells including blood microvessels Journal of Clinical Oncology, 2020, 38, 211-211.	1.6	1
183	Constructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment. Acta Biomaterialia, 2021, 140, 275-275.	8.3	1
184	Development of Highly Sensitive Molecular Blocks at Cancer Microenvironment for Rapid Cancer Cell Death. Langmuir, 2021, , .	3.5	1
185	Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-13-glutamate and calcium cations. Materials Today Bio, 2022, 14, 100225.	5.5	1
186	Biomacromoleculeâ€fueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie, 0, , .	2.0	1
187	Effect of Extracellular Matrix Density and Cell Number on Blood Capillary Formation in Three-Dimensional Tissue. Bulletin of the Chemical Society of Japan, 2022, 95, 1163-1168.	3.2	1
188	Mechanism assay of interaction between blood vessels-near infrared probe and cell surface marker proteins of endothelial cells. Materials Today Bio, 2022, 15, 100332.	5.5	1
189	Back Cover: Macromol. Biosci. 11/2006. Macromolecular Bioscience, 2006, 6, 968-968.	4.1	0
190	2P223 Effect of fibronetcin thin film on insertion efficiency of a nanoneedle into culture cells(The) Tj ETQq0 0 0 r	gBT /Over 0.1	lock 10 Tf 50
191	Investigation on thermoresponsive behavior of biodegradable poly(γâ€glutamic) Tj ETQq1 1 0.784314 rgBT /Ove 4823-4828.	rlock 10 7 2.3	If 50 347 Td 0
192	Fabrication of multilayer structured tubular tissue using water transfer printing. , 2013, , .		0
193	Biomedical Applications: Multilayered Blood Capillary Analogs in Biodegradable Hydrogels for In Vitro Drug Permeability Assays (Adv. Funct. Mater. 14/2013). Advanced Functional Materials, 2013, 23, 1730-1730.	14.9	0
194	Circulatory culture system for elastic fiber development of tissue-engineered blood vessels. , 2014, , .		0
195	3D-cell assembly by control of cell surfaces. , 2015, , .		0
196	Construction of Mouseâ€Embryonicâ€Cellâ€Derived 3D Pacemaker Tissues by Layerâ€by‣ayer Nanofilm Coati ChemNanoMat, 2016, 2, 466-471.	^{ng} 2.8	0
197	In Vitro Design of Nanoparticles Using an Artificial 3D-Blood Vessel Wall Model for Atherosclerosis Treatment. ACS Symposium Series, 2017, , 195-225.	0.5	0
198	Development of Full-Thickness Human Skin Equivalents with Blood and Lymph-like Capillary Networks by Cell Coating Technology. , 2017, , 345-362.	_	0

#	Article	IF	CITATIONS
199	Biofabrication: Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cellâ€Accumulation Technology (Small 2/2018). Small, 2018, 14, 1870010.	10.0	0
200	Biomedical and Pharmaceutical Researches Using Bioprinting Technology. Materia Japan, 2018, 57, 164-168.	0.1	0
201	A Nearâ€Infrared Organic Fluorescent Probe for Broad Applications for Blood Vessels Imaging by Highâ€Throughput Screening via 3Dâ€Blood Vessel Models (Small Methods 8/2021). Small Methods, 2021, 5, 2170036.	8.6	0
202	7C12 3D-Cell Manipulation Using Nanofilms and Development of Engineered Tissue Models. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _7C12-17C12-2	0.0	0
203	The Potential Use of Three-Dimensional Cellular Multilayers as a Blood Vessel Model. Nanomedicine and Nanotoxicology, 2014, , 95-129.	0.2	0
204	2C47 Fabrication of Small blood vessel using 3D Multilayer Assembly. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 427-428.	0.0	0
205	Regulation of Cell Functions Using Nanofilms. Membrane, 2020, 45, 245-249.	0.0	0