Xavier Loyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Extracellular vesicles in coronary artery disease. Nature Reviews Cardiology, 2017, 14, 259-272.	13.7	392
3	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
4	Microvesicles as Cell–Cell Messengers in Cardiovascular Diseases. Circulation Research, 2014, 114, 345-353.	4.5	348
5	Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circulation Research, 2014, 114, 434-443.	4.5	317
6	MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. Circulation, 2013, 127, 2097-2106.	1.6	203
7	Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. Circulation Research, 2018, 123, 100-106.	4.5	181
8	MicroRNAs as non-invasive biomarkers of heart transplant rejection. European Heart Journal, 2014, 35, 3194-3202.	2.2	170
9	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	19.0	163
10	Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. Journal of Heart and Lung Transplantation, 2016, 35, 795-807.	0.6	161
11	Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8675-E8684.	7.1	156
12	Shear Stress Regulates Endothelial Microparticle Release. Circulation Research, 2013, 112, 1323-1333.	4.5	143
13	Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65, 1882-1894.	12.1	140
14	Role of Myocardial Neuronal Nitric Oxide Synthase–Derived Nitric Oxide in β-Adrenergic Hyporesponsiveness After Myocardial Infarction–Induced Heart Failure in Rat. Circulation, 2004, 110, 2368-2375.	1.6	135
15	A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. Journal of Hepatology, 2020, 72, 528-538.	3.7	113
16	A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 13-20.	1.9	104
17	Natural Regulatory T Cells Limit Angiotensin II–Induced Aneurysm Formation and Rupture in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2374-2379.	2.4	94
18	Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardiac Fibrosis. Molecular Therapy - Nucleic Acids, 2019, 18, 363-374.	5.1	83

XAVIER LOYER

#	Article	IF	CITATIONS
19	Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis and Haemostasis, 2015, 113, 1084-1094.	3.4	79
20	Angiotensin II Mobilizes Spleen Monocytes to Promote the Development of Abdominal Aortic Aneurysm in <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 378-388.	2.4	79
21	Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis. Journal of the American College of Cardiology, 2016, 68, 2776-2793.	2.8	76
22	Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circulation Research, 2015, 117, e41-e53.	4.5	75
23	Cardiomyocyte Overexpression of Neuronal Nitric Oxide Synthase Delays Transition Toward Heart Failure in Response to Pressure Overload by Preserving Calcium Cycling. Circulation, 2008, 117, 3187-3198.	1.6	73
24	Altered Contractile Response due to Increased \hat{l}^2 3-Adrenoceptor Stimulation in Diabetic Cardiomyopathy. Anesthesiology, 2007, 107, 452-460.	2.5	63
25	Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 2015, 763, 90-103.	3.5	62
26	Group X Secreted Phospholipase A2 Limits the Development of Atherosclerosis in LDL Receptor–Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 466-473.	2.4	60
27	Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nature Communications, 2017, 8, 1829.	12.8	50
28	Association of annexin A5 with Na+/Ca2+ exchanger and caveolin-3 in non-failing and failing human heart. Journal of Molecular and Cellular Cardiology, 2006, 40, 47-55.	1.9	36
29	Involvement of β3-Adrenoceptor in Altered β-Adrenergic Response in Senescent Heart. Anesthesiology, 2008, 109, 1045-1053.	2.5	36
30	MicroRNAs as therapeutic targets in atherosclerosis. Expert Opinion on Therapeutic Targets, 2015, 19, 489-496.	3.4	33
31	MiR-223 is dispensable for platelet production and function in mice. Thrombosis and Haemostasis, 2013, 110, 1207-1214.	3.4	31
32	MicroRNA-21 Coordinates Human Multipotent Cardiovascular Progenitors Therapeutic Potential. Stem Cells, 2014, 32, 2908-2922.	3.2	30
33	The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circulation Research, 2017, 121, 234-243.	4.5	30
34	Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells. Scientific Reports, 2017, 7, 4111.	3.3	28
35	17β-Estradiol Regulates Constitutive Nitric Oxide Synthase Expression Differentially in the Myocardium in Response to Pressure Overload. Endocrinology, 2007, 148, 4579-4584.	2.8	26
36	Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy, 2018, 14, 173-175.	9.1	24

XAVIER LOYER

#	Article	IF	CITATIONS
37	Effects of sex differences on constitutive nitric oxide synthase expression and activity in response to pressure overload in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2650-H2658.	3.2	23
38	CONSTITUTIVE NITRIC OXIDE SYNTHASES IN THE HEART FROM HYPERTROPHY TO FAILURE. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 483-488.	1.9	23
39	Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. European Journal of Heart Failure, 2008, 10, 343-351.	7.1	23
40	Splenic Marginal Zone B Lymphocytes Regulate Cardiac Remodeling After Acute Myocardial Infarction in Mice. Journal of the American College of Cardiology, 2022, 79, 632-647.	2.8	22
41	MicroRNA-21 Deficiency Alters the Survival of Ly-6C ^{lo} Monocytes in <i>ApoE</i> ^{â^'/â^'} Mice and Reduces Early-Stage Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 170-177.	2.4	20
42	Preservation of the Positive Lusitropic Effect of \hat{l}^2 -Adrenoceptors Stimulation in Diabetic Cardiomyopathy. Anesthesia and Analgesia, 2008, 107, 1130-1138.	2.2	16
43	ACE Inhibition Prevents Diastolic Ca2+ Overload and Loss of Myofilament Ca2+ Sensitivity after Myocardial Infarction. Current Molecular Medicine, 2012, 12, 206-217.	1.3	14
44	Atorvastatin reduces β-Adrenergic dysfunction in rats with diabetic cardiomyopathy. PLoS ONE, 2017, 12, e0180103.	2.5	14
45	Differential micro-RNA expression in diabetic patients with abdominal aortic aneurysm. Biochimie, 2019, 162, 1-7.	2.6	14
46	Pleiotropic cardiac functions controlled by ischemia-induced lncRNA H19. Journal of Molecular and Cellular Cardiology, 2020, 146, 43-59.	1.9	12
47	Adipocyteâ€derived extracellular vesicles in health and diseases: Nanoâ€packages with vast biological properties. FASEB BioAdvances, 2021, 3, 407-419.	2.4	9
48	Neuronal NO synthase mediates plenylephrine induced cardiomyocyte hypertrophy through facilitation of NFAT-dependent transcriptional activity. Biochemistry and Biophysics Reports, 2019, 18, 100620.	1.3	1
49	Messages from the heart. European Heart Journal, 2021, 42, 2793-2795.	2.2	1