Akiyoshi Uezumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237438/publications.pdf

Version: 2024-02-01

62	5,091	29 h-index	58
papers	citations		g-index
63	63	63	5879
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell, 2022, 29, 265-280.e6.	11.1	36
2	Galectin-3 promotes the adipogenic differentiation of PDGFR $\hat{l}\pm +$ cells and ectopic fat formation in regenerating muscle. Development (Cambridge), 2022, 149, .	2.5	5
3	Increased MFGâ€E8 at neuromuscular junctions is an exacerbating factor for sarcopeniaâ€associated denervation. Aging Cell, 2022, 21, e13536.	6.7	7
4	Detection of muscle stem cell-derived myonuclei in murine overloaded muscles. STAR Protocols, 2022, 3, 101307.	1.2	1
5	Desloratadine inhibits heterotopic ossification by suppression of BMP2â€Smad1/5/8 signaling. Journal of Orthopaedic Research, 2021, 39, 1297-1304.	2.3	9
6	Retinoic Acid Receptor Agonists Suppress Muscle Fatty Infiltration in Mice. American Journal of Sports Medicine, 2021, 49, 332-339.	4.2	8
7	Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Research and Therapy, 2021, 12, 446.	5.5	11
8	Transgenic Expression of Bmp3b in Mesenchymal Progenitors Mitigates Age-Related Muscle Mass Loss and Neuromuscular Junction Degeneration. International Journal of Molecular Sciences, 2021, 22, 10246.	4.1	6
9	Liver fibrosis-induced muscle atrophy is mediated by elevated levels of circulating TNFα. Cell Death and Disease, 2021, 12, 11.	6.3	14
10	Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. Journal of Clinical Investigation, 2021, 131, .	8.2	63
11	Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells, 2021, 39, 306-317.	3.2	5
12	Measurement of Lateral Transmission of Force in the Extensor Digitorum Longus Muscle of Young and Old Mice. International Journal of Molecular Sciences, 2021, 22, 12356.	4.1	3
13	Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 267.	3.7	42
14	Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. Journal of Cellular Physiology, 2019, 234, 1689-1698.	4.1	10
15	Tbx1 regulates inherited metabolic and myogenic abilities of progenitor cells derived from slow- and fast-type muscle. Cell Death and Differentiation, 2019, 26, 1024-1036.	11.2	23
16	Expression and Functional Analyses of Dlk1 in Muscle Stem Cells and Mesenchymal Progenitors during Muscle Regeneration. International Journal of Molecular Sciences, 2019, 20, 3269.	4.1	11
17	Reduced expression of calcitonin receptor is closely associated with ageâ€related loss of the muscle stem cell pool. JCSM Rapid Communications, 2019, 2, 1-13.	1.6	4
18	Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development (Cambridge), 2019, 146, .	2.5	34

#	Article	IF	CITATIONS
19	The CalcR-PKA-Yap1 Axis Is Critical for Maintaining Quiescence in Muscle Stem Cells. Cell Reports, 2019, 29, 2154-2163.e5.	6.4	38
20	<i>Myogenin</i> promoterâ€essociated lnc <scp>RNA</scp> <i>Myoparr</i> is essential for myogenic differentiation. EMBO Reports, 2019, 20, .	4.5	46
21	Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. ELife, 2019, 8, .	6.0	40
22	UBL3 modification influences protein sorting to small extracellular vesicles. Nature Communications, 2018, 9, 3936.	12.8	53
23	Gm7325 Transcription Is Regulated by MyoD in Activated Muscle Satellite Cells. Biophysical Journal, 2018, 114, 628a.	0.5	0
24	Promethazine Hydrochloride Inhibits Ectopic Fat Cell Formation in Skeletal Muscle. American Journal of Pathology, 2017, 187, 2627-2634.	3.8	12
25	Disuse Atrophy Accompanied by Intramuscular Ectopic Adipogenesis in Vastus Medialis Muscle of Advanced Osteoarthritis Patients. American Journal of Pathology, 2017, 187, 2674-2685.	3.8	12
26	<i>Gm7325</i> is MyoD-dependently expressed in activated muscle satellite cells . Biomedical Research, 2017, 38, 215-219.	0.9	8
27	Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity. PLoS ONE, 2017, 12, e0177516.	2.5	30
28	Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle. Stem Cell Reports, 2016, 7, 263-278.	4.8	95
29	Identification, Isolation, and Characterization of Mesenchymal Progenitors in Mouse and Human Skeletal Muscle. Methods in Molecular Biology, 2016, 1460, 241-253.	0.9	20
30	Toward Regenerative Medicine for Muscular Dystrophies. , 2016, , 103-122.		0
31	Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Reports, 2015, 13, 302-314.	6.4	88
32	Evidence of Notch-Hesr-Nrf2 Axis in Muscle Stem Cells, but Absence of Nrf2 Has No Effect on Their Quiescent and Undifferentiated State. PLoS ONE, 2015, 10, e0138517.	2.5	11
33	Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration. Development (Cambridge), 2015, 142, 51-61.	2.5	29
34	Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells, 2015, 33, 2456-2468.	3.2	22
35	Identification and characterization of PDGFRÎ \pm + mesenchymal progenitors in human skeletal muscle. Cell Death and Disease, 2014, 5, e1186-e1186.	6.3	241
36	Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Frontiers in Physiology, 2014, 5, 68.	2.8	114

#	Article	IF	CITATIONS
37	Adult stem cell and mesenchymal progenitor theories of aging. Frontiers in Cell and Developmental Biology, 2014, 2, 10.	3.7	37
38	Human skeletal muscle-derived PDGFR $\hat{l}\pm\pm$ cells formed heterotopic ossification. Osteoarthritis and Cartilage, 2014, 22, S130-S131.	1.3	1
39	Imatinib attenuates severe mouse dystrophy and inhibits proliferation and fibrosis-marker expression in muscle mesenchymal progenitors. Neuromuscular Disorders, 2013, 23, 349-356.	0.6	55
40	Osteogenic Differentiation Capacity of Human Skeletal Muscle-Derived Progenitor Cells. PLoS ONE, 2013, 8, e56641.	2.5	75
41	Calcitonin receptor and Odz4 are differently expressed in Pax7-positive cells during skeletal muscle regeneration. Journal of Molecular Histology, 2012, 43, 581-587.	2.2	20
42	Chondrogenic differentiation potential of CD56+ satellite cell and PDGFRα+ mesenchymal stem cell derived from human skeletal muscle. Osteoarthritis and Cartilage, 2012, 20, S270-S271.	1.3	0
43	Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science, 2011, 124, 3654-3664.	2.0	517
44	Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development (Cambridge), 2011, 138, 4609-4619.	2.5	125
45	Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology, 2010, 12, 143-152.	10.3	1,013
46	Activin signaling as an emerging target for therapeutic interventions. Cell Communication and Signaling, 2009, 7, 15.	6.5	153
47	CD90-positive cells, an additional cell population, produce laminin $\hat{l}\pm 2$ upon transplantation to dy/dy mice. Experimental Cell Research, 2008, 314, 193-203.	2.6	23
48	Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Experimental Cell Research, 2008, 314, 3232-3244.	2.6	183
49	Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in <i>mdx</i> mice. FASEB Journal, 2008, 22, 477-487.	0.5	171
50	Muscle CD31(â^') CD45(â^') Side Population Cells Promote Muscle Regeneration by Stimulating Proliferation and Migration of Myoblasts. American Journal of Pathology, 2008, 173, 781-791.	3.8	75
51	Signal Transduction Pathway through Activin Receptors as a Therapeutic Target of Musculoskeletal Diseases and Cancer. Endocrine Journal, 2008, 55, 11-21.	1.6	147
52	Autologous Transplantation of SM/C-2.6+ Satellite Cells Transduced with Micro-dystrophin CS1 cDNA by Lentiviral Vector into mdx Mice. Molecular Therapy, 2007, 15, 2178-2185.	8.2	82
53	Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. Journal of Cell Biology, 2007, 176, 329-341.	5.2	308
54	Molecular Signature of Quiescent Satellite Cells in Adult Skeletal Muscle. Stem Cells, 2007, 25, 2448-2459.	3.2	402

#	ARTICLE	IF	CITATION
55	NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. Journal of Clinical Investigation, 2007, 117, 2468-2476.	8.2	157
56	Functional heterogeneity of side population cells in skeletal muscle. Biochemical and Biophysical Research Communications, 2006, 341, 864-873.	2.1	110
57	Inhibitors of the TGF-β Superfamily and their Clinical Applications. Mini-Reviews in Medicinal Chemistry, 2006, 6, 1255-1261.	2.4	31
58	36. Transplantation of SM/C-2.6+ Satellite Cells Transduced with Micro-Dystrophin CS1 cDNA by Lentiviral Vector into mdx Mice. Molecular Therapy, 2006, 13, S15.	8.2	0
59	Participation of Bone Marrow-Derived Cells in Fibrotic Changes in Denervated Skeletal Muscle. American Journal of Pathology, 2005, 166, 1721-1732.	3.8	20
60	Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration. Biochemical and Biophysical Research Communications, 2004, 321, 1050-1061.	2.1	50
61	Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Experimental Cell Research, 2004, 296, 245-255.	2.6	179
62	Collagen-VI Supplementation by Cell Transplantation Improves Muscle Regeneration in Ullrich Congenital Muscular Dystrophy Model Mice. SSRN Electronic Journal, 0, , .	0.4	0