Pablo CerdÃ;-DurÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237101/publications.pdf Version: 2024-02-01

PARIO CERDÃ:-DURÃ:N

#	Article	IF	CITATIONS
1	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
2	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
3	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
4	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
5	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
6	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
7	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
8	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
9	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
10	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
11	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><ml:mtext> <ml:mtext> stretchy="false">⊙</ml:mtext></ml:mtext></mml:mrow>. Physical Review</mml:math 	ml m text>	ั<ท ลเฮเ ส:msub>
12	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
13	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
14	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
15	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
16	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
17	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
18	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
20	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
21	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
22	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
23	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
24	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
25	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
26	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
27	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
28	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
29	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
30	Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D, 2018, 98, .	4.7	168
31	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
32	Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Physical Review D, 2015, 92, .	4.7	165
33	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
34	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
35	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
36	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135

#	Article	IF	CITATIONS
37	Semi-global simulations of the magneto-rotational instability in core collapse supernovae. Astronomy and Astrophysics, 2009, 498, 241-271.	5.1	132
38	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
39	Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue. Physical Review D, 2009, 79, .	4.7	112
40	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
41	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
42	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
43	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
44	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
45	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
46	Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Physical Review Letters, 2019, 123, 221101.	7.8	82
47	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
48	Magnetoelastic oscillations of neutron stars with dipolar magnetic fields. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2054-2078.	4.4	74
49	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
50	GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE. Astrophysical Journal Letters, 2013, 779, L18.	8.3	72
51	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
52	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
53	Magneto-elastic oscillations and the damping of crustal shear modes in magnetars. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 410, L37-L41.	3.3	70
54	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69

#	Article	IF	CITATIONS
55	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
56	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
57	A new general relativistic magnetohydrodynamics code for dynamical spacetimes. Astronomy and Astrophysics, 2008, 492, 937-953.	5.1	60
58	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
59	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
60	General relativistic simulations of passive-magneto-rotational core collapse with microphysics. Astronomy and Astrophysics, 2007, 474, 169-191.	5.1	58
61	Alfvén QPOs in magnetars in the anelastic approximation. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1607-1620.	4.4	58
62	Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1811-1831.	4.4	56
63	Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5272-5286.	4.4	54
64	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
65	Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3967-3988.	4.4	53
66	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
67	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
68	Universal Relations for Gravitational-Wave Asteroseismology of Protoneutron Stars. Physical Review Letters, 2019, 123, 051102.	7.8	50
69	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
70	On the maximum magnetic field amplification by the magnetorotational instability in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3316-3334.	4.4	46
71	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
72	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46

#	Article	IF	CITATIONS
73	Evolutionary sequences of rotating protoneutron stars. Astronomy and Astrophysics, 2004, 418, 283-294.	5.1	46
74	New method to observe gravitational waves emitted by core collapse supernovae. Physical Review D, 2018, 98, .	4.7	44
75	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
76	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
77	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1	I 0.784314	rgдT /Overlo
78	The transient gravitational-wave sky. Classical and Quantum Gravity, 2013, 30, 193002.	4.0	40
79	CFC+: improved dynamics and gravitational waveforms from relativistic core collapse simulations. Astronomy and Astrophysics, 2005, 439, 1033-1055.	5.1	40
80	The impact of non-dipolar magnetic fields in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 492, 58-71.	4.4	39
81	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
82	Termination of the magnetorotational instability via parasitic instabilities in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3782-3802.	4.4	37
83	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
84	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
85	Dynamical bar-mode instability in spinning bosonic stars. Physical Review D, 2020, 102, .	4.7	35
86	Scheduled Relaxation Jacobi method: Improvements and applications. Journal of Computational Physics, 2016, 321, 369-413.	3.8	33
87	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
88	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
89	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
90	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32

#	Article	IF	CITATIONS
91	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
92	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31
93	Imprints of Superfluidity on Magnetoelastic Quasiperiodic Oscillations of Soft Gamma-Ray Repeaters. Physical Review Letters, 2013, 111, 211102.	7.8	30
94	Are pulsars born with a hidden magnetic field?. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3813-3826.	4.4	30
95	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
96	Deep learning for core-collapse supernova detection. Physical Review D, 2021, 103, .	4.7	30
97	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
98	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
99	Crust–magnetosphere coupling during magnetar evolution and implications for the surface temperature. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5331-5338.	4.4	27
100	AMR simulations of the low bar-mode instability of neutron stars. Computer Physics Communications, 2007, 177, 288-297.	7.5	26
101	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
102	On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes. Astrophysical Journal, Supplement Series, 2017, 230, 18.	7.7	25
103	Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae. Physical Review D, 2021, 103, .	4.7	25
104	The force-free twisted magnetosphere of a neutron star. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1894-1909.	4.4	23
105	Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4199-4212.	4.4	22
106	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
107	Estimation of the mechanical properties of the eye through the study of its vibrational modes. PLoS ONE, 2017, 12, e0183892.	2.5	21
108	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21

#	Article	IF	CITATIONS
109	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
110	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
111	Very-high-frequency oscillations in the main peak of a magnetar giant flare. Nature, 2021, 600, 621-624.	27.8	20
112	Modulating the magnetosphere of magnetars by internal magneto-elastic oscillations. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1416-1424.	4.4	19
113	Long-term evolution of the force-free twisted magnetosphere of a magnetar. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3914-3923.	4.4	19
114	Numerically solving the relativistic Grad–Shafranov equation in Kerr spacetimes: numerical techniques. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3927-3944.	4.4	19
115	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
116	Coherent magneto-elastic oscillations in superfluid magnetars. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4242-4257.	4.4	18
117	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	4.7	18
118	Can fermion-boson stars reconcile multimessenger observations of compact stars?. Physical Review D, 2022, 105, .	4.7	17
119	Gravitational waves in dynamical spacetimes with matter content in the fully constrained formulation. Physical Review D, 2012, 85, .	4.7	16
120	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
121	The force-free twisted magnetosphere of a neutron star – II. Degeneracies of the Grad–Shafranov equation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 625-635.	4.4	15
122	Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3410-3426.	4.4	15
123	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
124	Instability of twisted magnetar magnetospheres. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4858-4876.	4.4	14
125	On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method. Journal of Computational Physics, 2017, 332, 446-460.	3.8	13
126	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12

#	Article	IF	CITATIONS
127	Computational general relativistic force-free electrodynamics. Astronomy and Astrophysics, 2021, 647, A58.	5.1	11
128	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
129	Neutron Stars Formation and Core Collapse Supernovae. Astrophysics and Space Science Library, 2018, , 1-56.	2.7	10
130	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
131	Ocular anatomic changes for different accommodative demands using swept-source optical coherence tomography: a pilot study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2399-2406.	1.9	9
132	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
133	Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography. International Ophthalmology, 2019, 39, 303-310.	1.4	9
134	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
135	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
136	Cosmic Microwave Background Maps Lensed by Cosmological Structures: Simulations and Statistical Analysis. Astrophysical Journal, 2005, 628, 1-13.	4.5	8
137	Computational general relativistic force-free electrodynamics. Astronomy and Astrophysics, 2021, 647, A57.	5.1	8
138	Dynamical spacetimes and gravitational radiation in a Fully Constrained Formulation. Journal of Physics: Conference Series, 2010, 228, 012055.	0.4	6
139	Numerical viscosity in hydrodynamics simulations in general relativity. Classical and Quantum Gravity, 2010, 27, 205012.	4.0	6
140	Towards relativistic simulations of magneto-rotational core collapse. Classical and Quantum Gravity, 2007, 24, S155-S169.	4.0	5
141	Termination of the MRI via parasitic instabilities in core-collapse supernovae: influence of numerical methods. Journal of Physics: Conference Series, 2016, 719, 012009.	0.4	4
142	Non-Gaussian signatures in the lens deformations of the CMB Sky: A new ray-tracing procedure. Physical Review D, 2004, 69, .	4.7	3
143	Modulating magnetar emission by magnetoâ€elastic oscillations. Astronomische Nachrichten, 2014, 335, 240-245.	1.2	3
144	Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae. Journal of Physics: Conference Series, 2011, 314, 012079.	0.4	2

#	Article	IF	CITATIONS
145	Magneto-elastic torsional oscillations of magnetars. Journal of Physics: Conference Series, 2011, 283, 012013.	0.4	2
146	Magnetoâ€elastic oscillations modulating the emission of magnetars. Astronomische Nachrichten, 2017, 338, 1105-1108.	1.2	2
147	How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars. Proceedings of the International Astronomical Union, 2017, 12, 119-124.	0.0	2
148	Partially Implicit Runge-Kutta Methods for Wave-Like Equations. SEMA SIMAI Springer Series, 2014, , 267-278.	0.7	2
149	Magnetorotational Instability in Core-Collapse Supernovae. Acta Physica Polonica B, Proceedings Supplement, 2017, 10, 361.	0.1	2
150	Gravitational waves in Fully Constrained Formulation in a dynamical spacetime with matter content. Journal of Physics: Conference Series, 2011, 314, 012078.	0.4	1
151	Deep learning algorithms for gravitational waves core-collapse supernova detection. , 2021, , .		1
152	High-order methods for the simulation of hydromagnetic instabilities in core-collapse supernovae. Proceedings of the International Astronomical Union, 2010, 6, 479-481.	0.0	0
153	Relativistic MHD simulations of stellar core collapse and magnetars. Journal of Physics: Conference Series, 2011, 283, 012011.	0.4	0
154	Fallback accretion onto magnetized neutron stars and the hidden magnetic field model. Journal of Physics: Conference Series, 2015, 600, 012057.	0.4	0
155	Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein's revolution. Journal of Physics: Conference Series, 2015, 600, 011001.	0.4	0