Mi Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9235968/publications.pdf

Version: 2024-02-01

279798 265206 1,927 42 46 23 h-index citations g-index papers 49 49 49 2769 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	LILRB4, an immune checkpoint on myeloid cells. Blood Science, 2022, 4, 49-56.	0.9	5
2	Leukocyte immunoglobulinâ€like receptor B1 and B4 (LILRB1 and LILRB4): Highly sensitive and specific markers of acute myeloid leukemia with monocytic differentiation. Cytometry Part B - Clinical Cytometry, 2021, 100, 476-487.	1.5	8
3	Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antibody Therapeutics, 2021, 4, 16-33.	1.9	15
4	Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nature Genetics, 2021, 53, 672-682.	21.4	47
5	LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2–cFLIP–NF-κB signaling axis. Nature Cancer, 2021, 2, 1170-1184.	13.2	23
6	LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cellular and Molecular Immunology, 2020, 17, 272-282.	10.5	36
7	Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. , 2020, 8, e000515.		27
8	LILRB4-targeting Antibody–Drug Conjugates for the Treatment of Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2020, 19, 2330-2339.	4.1	29
9	Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunology Research, 2019, 7, 1244-1257.	3.4	51
10	The approval of sintilimab for classical Hodgkin's lymphoma: views and perspectives of anti-PD-1/PD-L1 antibodies in China. Antibody Therapeutics, 2019, 2, 54-55.	1.9	4
11	Next-Generation Antibody Therapeutics: Discovery, Development and Beyond: highlights of the third annual conference of the Chinese Antibody Society. Antibody Therapeutics, 2019, 2, 99-107.	1.9	1
12	The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation. Current Molecular Medicine, 2019, 18, 556-565.	1.3	6
13	Frontiers and Opportunities: Highlights of the 2nd Annual Conference of the Chinese Antibody Society. Antibody Therapeutics, 2018, 1, 27-36.	1.9	15
14	LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562, 605-609.	27.8	172
15	Preclinical characterization of Sintilimab, a fully human anti-PD-1 therapeutic monoclonal antibody for cancer. Antibody Therapeutics, 2018 , 1 , $65-73$.	1.9	25
16	NK cellâ€mediated antiâ€leukemia cytotoxicity is enhanced using a NKG2D ligand MICA and antiâ€CD20 scfv chimeric protein. European Journal of Immunology, 2018, 48, 1750-1763.	2.9	7
17	A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Molecular Therapy, 2018, 26, 2487-2495.	8.2	72
18	LILRB4 Signaling in Leukemia Cells Mediates T Cell Suppression and Tumor Infiltration. Blood, 2018, 132, 5236-5236.	1.4	0

#	Article	IF	Citations
19	Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Organic and Biomolecular Chemistry, 2017, 15, 5635-5642.	2.8	67
20	Pias1 is essential for erythroid and vascular development in the mouse embryo. Developmental Biology, 2016, 415, 98-110.	2.0	14
21	Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle, 2016, 15, 25-40.	2.6	150
22	The small heat shock protein $\hat{l}\pm A$ -crystallin negatively regulates pancreatic tumorigenesis. Oncotarget, 2016, 7, 65808-65824.	1.8	5
23	Inhibitory leukocyte immunoglobulin-like receptors in cancer development. Science China Life Sciences, 2015, 58, 1216-1225.	4.9	38
24	The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nature Cell Biology, 2015, 17, 665-677.	10.3	112
25	Inhibitory Receptor, gp49B1, Is Co-Expressed with c-Kit and Regulates Hematopoiesis during Development. Blood, 2015, 126, 4751-4751.	1.4	0
26	A motif in LILRB2 critical for Angptl2 binding and activation. Blood, 2014, 124, 924-935.	1.4	68
27	The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. ELife, 2014, 3, .	6.0	191
28	& amp; #945; A- and & amp; #945; B-Crystallins Interact with Caspase-3 and Bax to Guard Mouse Lens Development. Current Molecular Medicine, 2012, 12, 177-187.	1.3	63
29	The p53-Bak Apoptotic Signaling Axis Plays an Essential Role in Regulating Differentiation of the Ocular Lens. Current Molecular Medicine, 2012, 12, 901-916.	1.3	25
30	The Tumor Suppressor p53 Regulates c-Maf and Prox-1 to Control Lens Differentiation. Current Molecular Medicine, 2012, 12, 917-928.	1.3	23
31	The PP2A-Aβ Gene is Regulated by Multiple Transcriptional Factors Including Ets-1, SP1/SP3, and RXRα $ \hat{I}^2$. Current Molecular Medicine, 2012, 12, 982-994.	1.3	18
32	Alpha-Crystallins and Tumorigenesis. Current Molecular Medicine, 2012, 12, 1164-1173.	1.3	22
33	A Novel Spider Peptide Toxin Suppresses Tumor Growth Through Dual Signaling Pathways. Current Molecular Medicine, 2012, 12, 1350-1360.	1.3	57
34	Sumoylation Regulates Multiple Transcription Factors to Control Lens Differentiation. FASEB Journal, 2012, 26, 535.14.	0.5	1
35	Knockdown of Akt1 Promotes Akt2 Upregulation and Resistance to Oxidative-Stress-Induced Apoptosis Through Control of Multiple Signaling Pathways. Antioxidants and Redox Signaling, 2011, 15, 1-17.	5.4	32
36	Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death and Differentiation, 2010, 17, 1448-1462.	11.2	85

#	ARTICLE	IF	CITATION
37	Molecular Cloning of the Genes Encoding the PR55/Bβ/δRegulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, <i>Carassius auratus</i> . Gene Regulation and Systems Biology, 2010, 4, GRSB.S6065.	2.3	3
38	Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21034-21039.	7.1	84
39	Apoptosis: Its Functions and Control in the Ocular Lens. Current Molecular Medicine, 2010, 10, 864-875.	1.3	33
40	The small heat shock protein αA-crystallin is expressed in pancreas and acts as a negative regulator of carcinogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 621-631.	3.8	21
41	Transcriptional Regulation of PP2A-Aα Is Mediated by Multiple Factors Including AP-2α, CREB, ETS-1, and SP-1. PLoS ONE, 2009, 4, e7019.	2.5	22
42	Protein Phosphatase-2A Is a Target of Epigallocatechin-3-Gallate and Modulates p53-Bak Apoptotic Pathway. Cancer Research, 2008, 68, 4150-4162.	0.9	58
43	Protein Phosphatase-1 Modulates the Function of Pax-6, a Transcription Factor Controlling Brain and Eye Development. Journal of Biological Chemistry, 2007, 282, 13954-13965.	3.4	33
44	Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene, 2006, 25, 3006-3022.	5.9	92
45	hTERT Extends Proliferative Lifespan and Prevents Oxidative Stress-Induced Apoptosis in Human Lens Epithelial Cells. , 2005, 46, 2503.		32
46	Human Telomerase Reverse Transcriptase Immortalizes Bovine Lens Epithelial Cells and Suppresses Differentiation through Regulation of the ERK Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 22776-22787.	3.4	29