List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9235748/publications.pdf Version: 2024-02-01

STEEFEN LUNC

#	Article	IF	CITATIONS
1	Mouse Modeling Dissecting Macrophage–Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. Advanced Science, 2022, 9, e2105696.	11.2	14
2	Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity, 2022, 55, 442-458.e8.	14.3	12
3	A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity, 2021, 54, 176-190.e7.	14.3	99
4	Food colors caught red-handed. Cell Metabolism, 2021, 33, 1267-1269.	16.2	1
5	Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nature Communications, 2021, 12, 6230.	12.8	20
6	Intravital visualization of interactions of murine Peyer's patchâ€resident dendritic cells with M cells. European Journal of Immunology, 2020, 50, 537-547.	2.9	9
7	Bone marrow dendritic cells support the survival of chronic lymphocytic leukemia cells in a CD84 dependent manner. Oncogene, 2020, 39, 1997-2008.	5.9	2
8	Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study. European Journal of Immunology, 2020, 50, 353-362.	2.9	53
9	TLR2 Dimerization Blockade Allows Generation of Homeostatic Intestinal Macrophages under Acute Colitis Challenge. Journal of Immunology, 2020, 204, 707-717.	0.8	4
10	Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO Journal, 2020, 39, e104464.	7.8	105
11	Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity, 2020, 53, 1033-1049.e7.	14.3	93
12	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78.	2.5	41
13	Polyglutamine-Related Aggregates Can Serve as a Potent Antigen Source for Cross-Presentation by Dendritic Cells. Journal of Immunology, 2020, 205, 2583-2594.	0.8	2
14	Novel Hexb-based tools for studying microglia in the CNS. Nature Immunology, 2020, 21, 802-815.	14.5	186
15	Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nature Immunology, 2020, 21, 525-534.	14.5	74
16	Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia. Journal of Clinical Investigation, 2020, 130, 1315-1329.	8.2	35
17	Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Frontiers in Immunology, 2020, 11, 614509.	4.8	18
18	Defining murine monocyte differentiation into colonic and ileal macrophages. ELife, 2020, 9, .	6.0	25

#	Article	IF	CITATIONS
19	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	31.5	167
20	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	28.9	772
21	IL-23–producing IL-10Rα–deficient gut macrophages elicit an IL-22–driven proinflammatory epithelial cell response. Science Immunology, 2019, 4, .	11.9	68
22	DC Respond to Cognate T Cell Interaction in the Antigen-Challenged Lymph Node. Frontiers in Immunology, 2019, 10, 863.	4.8	16
23	DNA-catching BM macrophages set hematopoiesis. Blood, 2019, 134, 1274-1275.	1.4	1
24	Obesity and dysregulated central and peripheral macrophage–neuron crossâ€ŧalk. European Journal of Immunology, 2019, 49, 19-29.	2.9	15
25	Microglial SIRPα regulates the emergence of CD11c+ microglia and demyelination damage in white matter. ELife, 2019, 8, .	6.0	39
26	Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizoneâ€induced demyelination. European Journal of Immunology, 2018, 48, 1308-1318.	2.9	71
27	ICAMs Are Not Obligatory for Functional Immune Synapses between Naive CD4ÂT Cells and Lymph Node DCs. Cell Reports, 2018, 22, 849-859.	6.4	43
28	Macrophages and monocytes: of tortoises and hares. Nature Reviews Immunology, 2018, 18, 85-86.	22.7	20
29	Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 835-847.	3.3	17
30	Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nature Communications, 2018, 9, 5206.	12.8	166
31	Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy. Journal of Neuroinflammation, 2018, 15, 278.	7.2	18
32	Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nature Immunology, 2018, 19, 636-644.	14.5	175
33	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	12.8	152
34	Induction of Nitric-Oxide Metabolism in Enterocytes Alleviates Colitis and Inflammation-Associated Colon Cancer. Cell Reports, 2018, 23, 1962-1976.	6.4	51
35	DTRâ€mediated conditional cell ablation—Progress and challenges. European Journal of Immunology, 2018, 48, 1114-1119.	2.9	21
36	Erythrocyte survival is controlled by microRNA-142. Haematologica, 2017, 102, 676-685.	3.5	33

#	Article	IF	CITATIONS
37	Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine, 2017, 23, 623-630.	30.7	282
38	A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nature Neuroscience, 2017, 20, 793-803.	14.8	446
39	Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. Journal of Controlled Release, 2017, 258, 182-195.	9.9	79
40	Genomic Characterization of Murine Monocytes Reveals C/EBPÎ ² Transcription Factor Dependence of Ly6C â ^{~?} Cells. Immunity, 2017, 46, 849-862.e7.	14.3	233
41	Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nature Immunology, 2017, 18, 665-674.	14.5	200
42	MicroRNAâ€142 controls thymocyte proliferation. European Journal of Immunology, 2017, 47, 1142-1152.	2.9	29
43	<i>Irf4</i> -dependent CD103 ⁺ CD11b ⁺ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut, 2017, 66, 2110-2120.	12.1	63
44	Dicer Deficiency Differentially Impacts Microglia of the Developing and Adult Brain. Immunity, 2017, 46, 1030-1044.e8.	14.3	68
45	Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. Journal of Experimental Medicine, 2017, 214, 905-917.	8.5	63
46	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
47	Rac1 functions downstream of miR-142 in regulation of erythropoiesis. Haematologica, 2017, 102, e476-e480.	3.5	9
48	Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity, 2017, 47, 183-198.e6.	14.3	245
49	Murine Monocytes: Origins, Subsets, Fates, and Functions. , 2017, , 141-153.		2
50	Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury. Frontiers in Immunology, 2017, 8, 626.	4.8	74
51	Neutralization of proâ€inflammatory monocytes by targeting TLR2 dimerization ameliorates colitis. EMBO Journal, 2016, 35, 685-698.	7.8	30
52	CD11c.DTR mice develop a fatal fulminant myocarditis after local or systemic treatment with diphtheria toxin. European Journal of Immunology, 2016, 46, 2028-2042.	2.9	20
53	Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathologica Communications, 2016, 4, 102.	5.2	67
54	Murine Monocytes: Origins, Subsets, Fates, and Functions. Microbiology Spectrum, 2016, 4, .	3.0	48

#	Article	IF	CITATIONS
55	In Vivo Analysis of Intestinal Mononuclear Phagocytes. Methods in Molecular Biology, 2016, 1423, 255-268.	0.9	2
56	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	30.7	987
57	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	14.5	872
58	Gatekeeper role of brain antigenâ€presenting CD11c ⁺ cells in neuroinflammation. EMBO Journal, 2016, 35, 89-101.	7.8	59
59	Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience, 2016, 19, 995-998.	14.8	399
60	The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nature Immunology, 2016, 17, 18-25.	14.5	315
61	Macrophage precursor cells from the left atrial appendage of the heart spontaneously reprogram into a C-kit+/CD45â^' stem cell-like phenotype. International Journal of Cardiology, 2016, 209, 296-306.	1.7	10
62	Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. ELife, 2016, 5, .	6.0	117
63	Guardians of the Gut ââ,¬â€œ Murine Intestinal Macrophages and Dendritic Cells. Frontiers in Immunology, 2015, 6, 254.	4.8	102
64	IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nature Communications, 2015, 6, 6525.	12.8	81
65	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	14.3	506
66	Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity, 2015, 42, 679-691.	14.3	157
67	Macrophages: Development and Tissue Specialization. Annual Review of Immunology, 2015, 33, 643-675.	21.8	687
68	Functional classification of memory CD8+ T cells by CX3CR1 expression. Nature Communications, 2015, 6, 8306.	12.8	231
69	Differential roles of resident microglia and infiltrating monocytes in murine CNS autoimmunity. Seminars in Immunopathology, 2015, 37, 613-623.	6.1	60
70	Making the case for chromatin profiling: a new tool to investigate the immune-regulatory landscape. Nature Reviews Immunology, 2015, 15, 585-594.	22.7	32
71	Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends in Immunology, 2015, 36, 614-624.	6.8	136
72	The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity. Immunity, 2015, 43, 502-514.	14.3	391

#	Article	IF	CITATIONS
73	Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity. Immunity, 2015, 43, 776-787.	14.3	55
74	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1677.	28.9	875
75	Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment. Cell, 2014, 159, 1312-1326.	28.9	1,705
76	Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science, 2014, 343, 776-779.	12.6	1,563
77	The Axis of Tolerance. Science, 2014, 343, 1439-1440.	12.6	17
78	Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 2014, 14, 392-404.	22.7	1,456
79	Development and Function of Dendritic Cell Subsets. Immunity, 2014, 40, 642-656.	14.3	637
80	Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5–induced eosinophil development. Nature Immunology, 2014, 15, 36-44.	14.5	56
81	Opposing Effects of Membrane-Anchored CX3CL1 on Amyloid and Tau Pathologies via the p38 MAPK Pathway. Journal of Neuroscience, 2014, 34, 12538-12546.	3.6	98
82	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	8.5	374
83	Chromatin state dynamics during blood formation. Science, 2014, 345, 943-949.	12.6	699
84	Microglia: unique and common features with other tissue macrophages. Acta Neuropathologica, 2014, 128, 319-331.	7.7	111
85	Macrophage-Restricted Interleukin-10 Receptor Deficiency, but Not IL-10 Deficiency, Causes Severe Spontaneous Colitis. Immunity, 2014, 40, 720-733.	14.3	460
86	miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. ELife, 2014, 3, e01964.	6.0	67
87	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 1073-1079.	14.3	26
88	A Close Encounter of the Third Kind. Advances in Immunology, 2013, 120, 69-103.	2.2	125
89	A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience, 2013, 16, 1618-1626.	14.8	574
90	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 79-91.	14.3	2,528

#	Article	IF	CITATIONS
91	Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naÃ ⁻ ve CD8+ T cells in the bone marrow. Blood, 2013, 122, 193-208.	1.4	35
92	Intestinal macrophages: well educated exceptions from the rule. Trends in Immunology, 2013, 34, 162-168.	6.8	176
93	Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunology and Cell Biology, 2013, 91, 232-239.	2.3	114
94	Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus. Immunity, 2013, 38, 555-569.	14.3	552
95	On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. Journal of Experimental Medicine, 2013, 210, 2611-2625.	8.5	98
96	Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood, 2013, 121, 1016-1027.	1.4	102
97	Transcriptional Reprogramming of CD11b+Esamhi Dendritic Cell Identity and Function by Loss of Runx3. PLoS ONE, 2013, 8, e77490.	2.5	30
98	Microglia, seen from the CX3CR1 angle. Frontiers in Cellular Neuroscience, 2013, 7, 26.	3.7	268
99	Unraveling Chemokine and Chemokine Receptor Expression Patterns Using Genetically Engineered Mice. Methods in Molecular Biology, 2013, 1013, 129-144.	0.9	2
100	Non-Identical Twins – Microglia and Monocyte-Derived Macrophages in Acute Injury and Autoimmune Inflammation. Frontiers in Immunology, 2012, 3, 89.	4.8	47
101	Clonal allelic predetermination of immunoglobulin-lê rearrangement. Nature, 2012, 490, 561-565.	27.8	42
102	Dendritic Cells Ameliorate Autoimmunity in the CNS by Controlling the Homeostasis of PD-1 Receptor+ Regulatory T Cells. Immunity, 2012, 37, 264-275.	14.3	184
103	Ly6Chi Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells. Immunity, 2012, 37, 1076-1090.	14.3	613
104	The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nature Cell Biology, 2012, 14, 535-541.	10.3	136
105	Deletion of cognate CD8 T cells by immature dendritic cells: a novel role for perforin, granzyme A, TREM-1, and TLR7. Blood, 2012, 120, 1647-1657.	1.4	33
106	Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.	14.5	196
107	Mouse Dendritic Cells Pulsed with Capsular Polysaccharide Induce Resistance to Lethal Pneumococcal Challenge: Roles of T Cells and B Cells. PLoS ONE, 2012, 7, e39193.	2.5	6
108	TGFâ€Î² signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia, 2012, 60, 1160-1171.	4.9	103

#	Article	IF	CITATIONS
109	Dissecting the Autocrine and Paracrine Roles of the CCR2-CCL2 Axis in Tumor Survival and Angiogenesis. PLoS ONE, 2012, 7, e28305.	2.5	44
110	Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. Journal of Experimental Medicine, 2011, 208, 23-39.	8.5	181
111	Notch2 Receptor Signaling Controls Functional Differentiation of Dendritic Cells in the Spleen and Intestine. Immunity, 2011, 35, 780-791.	14.3	412
112	CX3CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium. Molecular and Cellular Neurosciences, 2011, 48, 236-245.	2.2	32
113	Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages?. Seminars in Immunology, 2011, 23, 58-64.	5.6	29
114	In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 2011, 118, e156-e167.	1.4	218
115	The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk. PLoS ONE, 2011, 6, e23472.	2.5	38
116	Utilization of Murine Colonoscopy for Orthotopic Implantation of Colorectal Cancer. PLoS ONE, 2011, 6, e28858.	2.5	59
117	Coupled preâ€mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Molecular Systems Biology, 2011, 7, 529.	7.2	126
118	CKIα ablation highlights a critical role for p53 in invasiveness control. Nature, 2011, 470, 409-413.	27.8	179
119	Recruited Macrophages Control Dissemination of Group A <i>Streptococcus</i> from Infected Soft Tissues. Journal of Immunology, 2011, 187, 6022-6031.	0.8	47
120	Quantitative analysis of intravenously administered contrast media reveals changes in vascular barrier functions in a murine colitis model. Magnetic Resonance in Medicine, 2011, 66, 235-243.	3.0	17
121	Dendritic cellâ€restricted CD80/86 deficiency results in peripheral regulatory Tâ€cell reduction but is not associated with lymphocyte hyperactivation. European Journal of Immunology, 2011, 41, 291-298.	2.9	63
122	A rescue gone wrong. Nature Immunology, 2011, 12, 1137-1138.	14.5	0
123	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	8.2	223
124	Monocytes: subsets, origins, fates and functions. Current Opinion in Hematology, 2010, 17, 53-59.	2.5	228
125	Development of Monocytes, Macrophages, and Dendritic Cells. Science, 2010, 327, 656-661.	12.6	2,471
126	Dendritic Cells: A Question of Upbringing. Immunity, 2010, 32, 502-504.	14.3	5

#	Article	IF	CITATIONS
127	Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nature Reviews Immunology, 2010, 10, 415-426.	22.7	176
128	Defining dendritic cells by conditional and constitutive cell ablation. Immunological Reviews, 2010, 234, 76-89.	6.0	71
129	Therapy of Murine Pulmonary Aspergillosis with Antibody-Alliinase Conjugates and Alliin. Antimicrobial Agents and Chemotherapy, 2010, 54, 898-906.	3.2	23
130	CX ₃ CR1 ⁺ CD8α ⁺ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14745-14750.	7.1	160
131	Bone marrow chimeric mice reveal a role for CX3CR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium. Journal of Leukocyte Biology, 2010, 88, 645-654.	3.3	11
132	Defining In Vivo Dendritic Cell Functions Using CD11c-DTR Transgenic Mice. Methods in Molecular Biology, 2010, 595, 429-442.	0.9	37
133	CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood, 2009, 113, 963-972.	1.4	396
134	Alveolar Type II Epithelial Cells Present Antigen to CD4 ⁺ T Cells and Induce Foxp3 ⁺ Regulatory T Cells. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 344-355.	5.6	95
135	Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice. PLoS Medicine, 2009, 6, e1000113.	8.4	650
136	CD4+Foxp3+ regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut, 2009, 58, 211-219.	12.1	80
137	Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunology, Immunotherapy, 2009, 58, 71-84.	4.2	91
138	Origins and tissueâ€contextâ€dependent fates of blood monocytes. Immunology and Cell Biology, 2009, 87, 30-38.	2.3	109
139	Intestinal Lamina Propria Dendritic Cell Subsets Have Different Origin and Functions. Immunity, 2009, 31, 502-512.	14.3	635
140	Probing In Vivo Origins of Mononuclear Phagocytes by Conditional Ablation and Reconstitution. Methods in Molecular Biology, 2009, 531, 71-87.	0.9	5
141	Lack of Conventional Dendritic Cells Is Compatible with Normal Development and T Cell Homeostasis, but Causes Myeloid Proliferative Syndrome. Immunity, 2008, 29, 986-997.	14.3	198
142	Probing in vivo dendritic cell functions by conditional cell ablation. Immunology and Cell Biology, 2008, 86, 409-415.	2.3	32
143	Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nature Immunology, 2008, 9, 388-395.	14.5	168
144	CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. Journal of Neuroimmunology, 2008, 205, 80-85.	2.3	38

#	Article	IF	CITATIONS
145	Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. Journal of Experimental Medicine, 2008, 205, 869-882.	8.5	838
146	Pneumococcal Capsular Polysaccharide Is Immunogenic When Present on the Surface of Macrophages and Dendritic Cells: TLR4 Signaling Induced by a Conjugate Vaccine or by Lipopolysaccharide Is Conducive. Journal of Immunology, 2008, 180, 2409-2418.	0.8	25
147	Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent stepin Δ <i>invG S</i> . Typhimurium colitis. Journal of Experimental Medicine, 2008, 205, 437-450.	8.5	164
148	Efficient Clearance of <i>Aspergillus fumigatus</i> in Murine Lungs by an Ultrashort Antimicrobial Lipopeptide, Palmitoyl-Lys-Ala- <scp>d</scp> Ala-Lys. Antimicrobial Agents and Chemotherapy, 2008, 52, 3118-3126.	3.2	36
149	CX3CR1+c-kit+ Bone Marrow Cells Give Rise to CD103+ and CD103â^' Dendritic Cells with Distinct Functional Properties. Journal of Immunology, 2008, 181, 6178-6188.	0.8	41
150	Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation, 2008, 118, 3954-65.	8.2	292
151	Lung Macrophages Serve as Obligatory Intermediate between Blood Monocytes and Alveolar Macrophages. Journal of Immunology, 2007, 179, 3488-3494.	0.8	223
152	Distinct Differentiation Potential of Blood Monocyte Subsets in the Lung. Journal of Immunology, 2007, 178, 2000-2007.	0.8	272
153	Lung Dendritic Cells Rapidly Mediate Anthrax Spore Entry through the Pulmonary Route. Journal of Immunology, 2007, 178, 7994-8001.	0.8	141
154	The Chemokine Receptor CX3CR1 Mediates Homing of MHC class II-Positive Cells to the Normal Mouse Corneal Epithelium. , 2007, 48, 1568.		94
155	FcÎ ³ Receptor IIB on Dendritic Cells Enforces Peripheral Tolerance by Inhibiting Effector T Cell Responses. Journal of Immunology, 2007, 178, 6217-6226.	0.8	100
156	The Contribution of Dendritic Cells to Host Defenses against <i>Streptococcus pyogenes</i> . Journal of Infectious Diseases, 2007, 196, 1794-1803.	4.0	46
157	Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17022-17027.	7.1	130
158	Organ-dependent in vivo priming of naive CD4+,but not CD8+,T cells by plasmacytoid dendritic cells. Journal of Experimental Medicine, 2007, 204, 1923-1933.	8.5	154
159	Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. Journal of Experimental Medicine, 2007, 204, 171-180.	8.5	553
160	Antibody-enhanced cross-presentation of self antigen breaks T cell tolerance. Journal of Clinical Investigation, 2007, 117, 1361-1369.	8.2	103
161	Microglia can be induced by IFN-γ or IL-4 to express neural or dendritic-like markers. Molecular and Cellular Neurosciences, 2007, 35, 490-500.	2.2	78
162	Allelic 'choice' governs somatic hypermutation in vivo at the immunoglobulin κ-chain locus. Nature Immunology, 2007, 8, 715-722.	14.5	45

#	Article	IF	CITATIONS
163	Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis. Cellular Microbiology, 2007, 9, 2826-2838.	2.1	63
164	Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. Journal of Cell Biology, 2007, 176, i3-i3.	5.2	0
165	An essential role for dendritic cells in human and experimental allergic rhinitis. Journal of Allergy and Clinical Immunology, 2006, 118, 1117-1125.	2.9	104
166	A Clonogenic Bone Marrow Progenitor Specific for Macrophages and Dendritic Cells. Science, 2006, 311, 83-87.	12.6	924
167	VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells. Cell, 2006, 124, 175-189.	28.9	1,092
168	CD8α+ Dendritic Cells Are Required for Efficient Entry of Listeria monocytogenes into the Spleen. Immunity, 2006, 25, 619-630.	14.3	160
169	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924.	14.8	1,334
170	Involvement of the CXCL12/CXCR4 Pathway in the Recovery of Skin Following Burns. Journal of Investigative Dermatology, 2006, 126, 468-476.	0.7	120
171	The Shiga toxin B-subunit targets antigenin vivo to dendritic cells and elicits anti-tumor immunity. European Journal of Immunology, 2006, 36, 1124-1135.	2.9	80
172	Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11chigh dendritic cells. European Journal of Immunology, 2006, 36, 2912-2919.	2.9	52
173	The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB Journal, 2006, 20, 896-905.	0.5	263
174	Tumor Necrosis Factor Alpha- and Inducible Nitric Oxide Synthase-Producing Dendritic Cells Are Rapidly Recruited to the Bladder in Urinary Tract Infection but Are Dispensable for Bacterial Clearance. Infection and Immunity, 2006, 74, 6100-6107.	2.2	87
175	Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 905-915.	8.2	231
176	Transepithelial Pathogen Uptake into the Small Intestinal Lamina Propria. Journal of Immunology, 2006, 176, 2465-2469.	0.8	171
177	Three pathways to mature macrophages in the early mouse yolk sac. Blood, 2005, 106, 3004-3011.	1.4	260
178	Epigenetic ontogeny of the Igk locus during B cell development. Nature Immunology, 2005, 6, 198-203.	14.5	152
179	A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nature Methods, 2005, 2, 419-426.	19.0	744
180	ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 2005, 8, 752-758.	14.8	3,272

#	Article	IF	CITATIONS
181	Distinctin vivo dendritic cell activation by live versus killedListeria monocytogenes. European Journal of Immunology, 2005, 35, 1463-1471.	2.9	87
182	The Inflammatory versus Constitutive Trafficking of Mononuclear Phagocytes into the Alveolar Space of Mice Is Associated with Drastic Changes in Their Gene Expression Profiles. Journal of Immunology, 2005, 175, 1884-1893.	0.8	79
183	CD11chigh Dendritic Cell Ablation Impairs Lymphopenia-Driven Proliferation of Naive and Memory CD8+ T Cells. Journal of Immunology, 2005, 175, 6428-6435.	0.8	98
184	In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. Journal of Experimental Medicine, 2005, 201, 981-991.	8.5	573
185	Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. Journal of Cell Biology, 2005, 169, 569-576.	5.2	390
186	CX ₃ CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance. Science, 2005, 307, 254-258.	12.6	1,449
187	Runx3 regulates mouse TGF-Î ² -mediated dendritic cell function and its absence results in airway inflammation. EMBO Journal, 2004, 23, 969-979.	7.8	269
188	Good, bad and beautiful—the role of dendritic cells in autoimmunity. Autoimmunity Reviews, 2004, 3, 54-60.	5.8	12
189	Role of CCR8 and Other Chemokine Pathways in the Migration of Monocyte-derived Dendritic Cells to Lymph Nodes. Journal of Experimental Medicine, 2004, 200, 1231-1241.	8.5	266
190	Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine, 2003, 9, 61-67.	30.7	931
191	Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties. Immunity, 2003, 19, 71-82.	14.3	2,947
192	In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens. Immunity, 2002, 17, 211-220.	14.3	1,579
193	Spatial Organization of Signal Transduction Molecules in the NK Cell Immune Synapses During MHC Class I-Regulated Noncytolytic and Cytolytic Interactions. Journal of Immunology, 2001, 167, 4358-4367.	0.8	161
194	Inflammatory Chemokine Transport and Presentation in HEV. Journal of Experimental Medicine, 2001, 194, 1361-1374.	8.5	504
195	The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. Journal of Clinical Investigation, 2001, 108, 1307-1314.	8.2	239
196	High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-IºB activation. Nature Medicine, 2000, 6, 573-577.	30.7	162
197	Regulation of Peripheral Lymph Node Genesis by the Tumor Necrosis Factor Family Member Trance. Journal of Experimental Medicine, 2000, 192, 1467-1478.	8.5	249
198	Severe B Cell Deficiency in Mice Lacking the Tec Kinase Family Members Tec and Btk. Journal of Experimental Medicine, 2000, 192, 1611-1624.	8.5	177

#	Article	IF	CITATIONS
199	Analysis of Fractalkine Receptor CX ₃ CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Molecular and Cellular Biology, 2000, 20, 4106-4114.	2.3	2,319
200	Chemokine receptors in lymphoid organ homeostasis. Current Opinion in Immunology, 1999, 11, 319-325.	5.5	68
201	Co-stimulation-dependent activation of a JNK-kinase in T lymphocytes. European Journal of Immunology, 1998, 28, 2320-2330.	2.9	71
202	B Cell Development under the Condition of Allelic Inclusion. Immunity, 1997, 6, 225-233.	14.3	222
203	Inhibition of NF-kappa B cellular function via specific targeting of the Ikappa B-ubiquitin ligase. EMBO Journal, 1997, 16, 6486-6494.	7.8	221
204	Signalling intermediates of CD28. Research in Immunology, 1995, 146, 154-158.	0.9	3
205	Costimulation Requirement for AP-1 and NF-?B Transcription Factor Activation in T Cells. Annals of the New York Academy of Sciences, 1995, 766, 245-252.	3.8	31
206	Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes Journal of Experimental Medicine, 1994, 179, 2023-2026.	8.5	68
207	Shutdown of class switch recombination by deletion of a switch region control element. Science, 1993, 259, 984-987.	12.6	332
208	Tongue immune compartment analysis reveals spatial macrophage heterogeneity. ELife, 0, 11, .	6.0	6