MarÃ-a G Barderas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9235701/publications.pdf

Version: 2024-02-01

103 papers 2,108 citations

218381 26 h-index 288905 40 g-index

108 all docs

 $\frac{108}{\text{docs citations}}$

108 times ranked 3202 citing authors

#	Article	IF	CITATIONS
1	Subclinical Liver Disease Is Associated with Subclinical Atherosclerosis in Psoriasis: Results from Two Observational Studies. Journal of Investigative Dermatology, 2022, 142, 88-96.	0.3	5
2	Underperformance of clinical risk scores in identifying imaging-based high cardiovascular risk in psoriasis: results from two observational cohorts. European Journal of Preventive Cardiology, 2022, 29, 591-598.	0.8	9
3	The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants, 2022, 11, 317.	2.2	6
4	Prioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach. Journal of Personalized Medicine, 2022, 12, 642.	1.1	0
5	Diabetes Mellitus and Its Implications in Aortic Stenosis Patients. International Journal of Molecular Sciences, 2021, 22, 6212.	1.8	7
6	TCA Cycle and Fatty Acids Oxidation Reflect Early Cardiorenal Damage in Normoalbuminuric Subjects with Controlled Hypertension. Antioxidants, 2021, 10, 1100.	2.2	6
7	Early renal and vascular damage within the normoalbuminuria condition. Journal of Hypertension, 2021, 39, 2220-2231.	0.3	7
8	Cardiovascular Risk Stratification Based on Oxidative Stress for Early Detection of Pathology. Antioxidants and Redox Signaling, 2021, 35, 602-617.	2.5	9
9	Analysis of Global Oxidative Status Using Multimarker Scores Reveals a Specific Association Between Renal Dysfunction and Diuretic Therapy in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1198-1205.	1.7	4
10	Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Advances in Wound Care, 2020, 9, 277-294.	2.6	5
11	Plasma CD5L and non-invasive diagnosis of acute heart rejection. Journal of Heart and Lung Transplantation, 2020, 39, 257-266.	0.3	13
12	Prediction of the early response to spironolactone in resistant hypertension by the combination of matrix metalloproteinase-9 activity and arterial stiffness parameters. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, , .	1.4	0
13	Oxidized Low-Density Lipoprotein Associates with Ventricular Stress in Young Adults and Triggers Intracellular Ca2+ Alterations in Adult Ventricular Cardiomyocytes. Antioxidants, 2020, 9, 1213.	2.2	7
14	Patient Management in Aortic Stenosis: Towards Precision Medicine through Protein Analysis, Imaging and Diagnostic Tests. Journal of Clinical Medicine, 2020, 9, 2421.	1.0	2
15	Why Does COVID-19 Affect Patients with Spinal Cord Injury Milder? A Case-Control Study: Results from Two Observational Cohorts. Journal of Personalized Medicine, 2020, 10, 182.	1.1	5
16	Urinary metabolic signatures reflect cardiovascular risk in the young, middle-aged, and elderly populations. Journal of Molecular Medicine, 2020, 98, 1603-1613.	1.7	10
17	Differential metabolic profile associated with the condition of normoalbuminuria in the hypertensive population. Nefrologia, 2020, 40, 439-445.	0.2	3
18	Effects of Growth Hormone Treatment and Rehabilitation in Incomplete Chronic Traumatic Spinal Cord Injury: Insight from Proteome Analysis. Journal of Personalized Medicine, 2020, 10, 183.	1.1	3

#	Article	IF	Citations
19	Novel molecular plasma signatures on cardiovascular disease can stratify patients throughout life. Journal of Proteomics, 2020, 222, 103816.	1.2	5
20	Perfil metabolómico diferenciador asociado a la condición de normoalbuminuria en la población hipertensa. Nefrologia, 2020, 40, 440-445.	0.2	2
21	Lifetime cardiovascular risk is associated with a multimarker score of systemic oxidative status in young adults independently of traditional risk factors. Translational Research, 2019, 212, 54-66.	2.2	8
22	Proteomic investigations into hypertension: what's new and how might it affect clinical practice?. Expert Review of Proteomics, 2019, 16, 583-591.	1.3	3
23	Frequency and Prognosis of Treated Hypertensive Patients According to Prior and New Blood Pressure Goals. Hypertension, 2019, 74, 130-136.	1.3	12
24	Association between renal dysfunction and metalloproteinase (MMP)-9 activity in hypertensive patients. Nefrologia, 2019, 39, 184-191.	0.2	6
25	Identification of six cardiovascular risk biomarkers in the young population: A promising tool for early prevention. Atherosclerosis, 2019, 282, 67-74.	0.4	14
26	Asociaci \tilde{A}^3 n entre disminuci \tilde{A}^3 n de la funci \tilde{A}^3 n renal y actividad metaloproteinasa-9 en el paciente hipertenso. Nefrologia, 2019, 39, 184-191.	0.2	8
27	Urine Haptoglobin and Haptoglobin-Related Protein Predict Response to Spironolactone in Patients With Resistant Hypertension. Hypertension, 2019, 73, 794-802.	1.3	6
28	Translational science in albuminuria: a new view of de novo albuminuria under chronic RAS suppression. Clinical Science, 2018, 132, 739-758.	1.8	4
29	Potential role of new molecular plasma signatures on cardiovascular risk stratification in asymptomatic individuals. Scientific Reports, 2018, 8, 4802.	1.6	8
30	A comprehensive study of calcific aortic stenosis: from rabbit to human samples. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	6
31	Two-Dimensional Electrophoresis and Identification by Mass Spectrometry. Methods in Molecular Biology, 2017, 1592, 71-78.	0.4	1
32	Immune system deregulation in hypertensive patients chronically RAS suppressed developing albuminuria. Scientific Reports, 2017, 7, 8894.	1.6	13
33	Citric Acid Metabolism in Resistant Hypertension. Hypertension, 2017, 70, 1049-1056.	1.3	36
34	Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Review of Proteomics, 2017, 14, 701-713.	1.3	6
35	Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis. Methods in Molecular Biology, 2017, 1619, 141-149.	0.4	1
36	A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis. Clinical Proteomics, 2017, 14, 12.	1.1	14

#	Article	lF	CITATIONS
37	A multicentric study to evaluate the use of relative retention times in targeted proteomics. Journal of Proteomics, 2017, 152, 138-149.	1.2	9
38	Progression of Renal Insufficiency in Patients with Essential Hypertension Treated with Renin Angiotensin Aldosterone System Blockers: An Electrocardiographic Correlation. Diseases (Basel,) Tj ETQq0 0 0	rgBT1 ¦O verlo	ock110 Tf 50 6
39	Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA. Frontiers in Immunology, 2017, 8, 853.	2.2	14
40	Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria. Oncotarget, 2017, 8, 15553-15562.	0.8	20
41	Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget, 2017, 8, 44217-44231.	0.8	33
42	MALDI-Imaging Mass Spectrometry: a step forward in the anatomopathological characterization of stenotic aortic valve tissue. Scientific Reports, 2016, 6, 27106.	1.6	39
43	Hypertensive patients exhibit an altered metabolism. A specific metabolite signature in urine is able to predict albuminuria progression. Translational Research, 2016, 178, 25-37.e7.	2.2	28
44	Role of matrix metalloproteinase-9Âin chronic kidney disease: a new biomarker of resistant albuminuria. Clinical Science, 2016, 130, 525-538.	1.8	48
45	Patients with calcific aortic stenosis exhibit systemic molecular evidence of ischemia, enhanced coagulation, oxidative stress and impaired cholesterol transport. International Journal of Cardiology, 2016, 225, 99-106.	0.8	34
46	Plasma Molecular Signatures in Hypertensive Patients With Renin–Angiotensin System Suppression. Hypertension, 2016, 68, 157-166.	1.3	18
47	Urinary alpha-1 antitrypsin and CD59 glycoprotein predict albuminuria development in hypertensive patients under chronic renin-angiotensin system suppression. Cardiovascular Diabetology, 2016, 15, 8.	2.7	24
48	Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 725-732.	1.8	35
49	iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Scientific Reports, 2015, 5, 17290.	1.6	36
50	Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Translational Research, 2015, 166, 474-484.e4.	2.2	62
51	KLK1 and ZG16B proteins and arginine–proline metabolism identified as novel targets to monitor atherosclerosis, acute coronary syndrome and recovery. Metabolomics, 2015, 11, 1056-1067.	1.4	35
52	ATP synthase subunit alpha and LV mass in ischaemic human hearts. Journal of Cellular and Molecular Medicine, 2015, 19, 442-451.	1.6	15
53	Contribution of proteomics to the management of vascular disorders. Translational Proteomics, 2015, 7, 3-14.	1.2	3
54	Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology. Journal of Proteomics, 2015, 126, 245-251.	1,2	27

#	Article	IF	CITATIONS
55	Prediction of development and maintenance of high albuminuria during chronic renin–angiotensin suppression by plasma proteomics. International Journal of Cardiology, 2015, 196, 170-177.	0.8	18
56	Lipid and protein maps defining arterial layers in atherosclerotic aorta. Data in Brief, 2015, 4, 328-331.	0.5	13
57	Heart Mitochondrial Proteome Study Elucidates Changes in Cardiac Energy Metabolism and Antioxidant PRDX3 in Human Dilated Cardiomyopathy. PLoS ONE, 2014, 9, e112971.	1.1	16
58	Application of Metabolomics to Cardiovascular and Renal Disease Biomarker Discovery. Comprehensive Analytical Chemistry, 2014, , 279-308.	0.7	0
59	Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics, 2014, 10, 414-424.	1.4	45
60	Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney International, 2014, 85, 103-111.	2.6	135
61	Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. Journal of Proteomics, 2014, 109, 368-381.	1.2	33
62	The plasma proteomic signature as a strategic tool for early diagnosis of acute coronary syndrome. Proteome Science, 2014, 12, 43.	0.7	5
63	Identification of a circulating microvesicle protein network involved in ST-elevation myocardial infarction. Thrombosis and Haemostasis, 2014, 112, 716-726.	1.8	39
64	Deregulation of smooth muscle cell cytoskeleton within the human atherosclerotic coronary media layer. Journal of Proteomics, 2013, 82, 155-165.	1.2	49
65	Aortic stenosis: a general overview of clinical, pathophysiological and therapeutic aspects. Expert Review of Cardiovascular Therapy, 2013, 11, 239-250.	0.6	17
66	Differential Protein Expression Analysis of Degenerative Aortic Stenosis by iTRAQ Labeling. Methods in Molecular Biology, 2013, 1005, 109-117.	0.4	2
67	Secretome of Human Aortic Valves. Methods in Molecular Biology, 2013, 1005, 237-243.	0.4	4
68	A Comparative Study of Immunodepletion and Equalization Methods for Aortic Stenosis Human Plasma. Methods in Molecular Biology, 2013, 1005, 245-256.	0.4	1
69	Characterization of Membrane and Cytosolic Proteins of Erythrocytes. Methods in Molecular Biology, 2013, 1000, 71-80.	0.4	4
70	Laser Microdissection and Saturation Labeling DIGE Method for the Analysis of Human Arteries. Methods in Molecular Biology, 2013, 1000, 21-32.	0.4	2
71	Vascular Proteomics. Methods in Molecular Biology, 2013, 1000, 1-20.	0.4	11
72	Characterization and Analysis of Human Arterial Tissue Secretome by 2-DE and nLC-MS/MS. Methods in Molecular Biology, 2013, 1000, 81-90.	0.4	0

#	Article	IF	Citations
73	Multiple Reaction Monitoring (MRM) of Plasma Proteins in Cardiovascular Proteomics. Methods in Molecular Biology, 2013, 1000, 191-199.	0.4	6
74	Modification of the Secretion Pattern of Proteases, Inflammatory Mediators, and Extracellular Matrix Proteins by Human Aortic Valve is Key in Severe Aortic Stenosis. Molecular and Cellular Proteomics, 2013, 12, 2426-2439.	2.5	23
75	Proteomics Toward Biomarkers Discovery and Risk Assessment. , 2013, , 115-130.		0
76	Potential blood biomarkers for stroke. Expert Review of Proteomics, 2012, 9, 437-449.	1.3	28
77	A role for the membrane proteome in human chronic kidney disease erythrocytes. Translational Research, 2012, 160, 374-383.	2.2	17
78	Proteomic Profile of Human Aortic Stenosis: Insights into the Degenerative Process. Journal of Proteome Research, 2012, 11, 1537-1550.	1.8	57
79	Inside human aortic stenosis: A proteomic analysis of plasma. Journal of Proteomics, 2012, 75, 1639-1653.	1.2	31
80	Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis. Journal of Proteomics, 2012, 75, 2960-2971.	1.2	56
81	Aportaciones de la proteómica al laboratorio clÃnico. Revista Del Laboratorio ClÃnico, 2011, 4, 214-224.	0.1	0
82	Targeting antigens to an invariant epitope of the MHC Class II DR molecule potentiates the immune response to subunit vaccines. Virus Research, 2011, 155, 55-60.	1.1	18
83	Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	81
84	A Proteomic Focus on the Alterations Occurring at the Human Atherosclerotic Coronary Intima. Molecular and Cellular Proteomics, 2011, 10, M110.003517.	2.5	71
85	Valvular Aortic Stenosis: A Proteomic Insight. Clinical Medicine Insights: Cardiology, 2010, 4, CMC.S3884.	0.6	22
86	Development of an Optimal Protocol for the Proteomic Analysis of Stenotic and Healthy Aortic Valves. Revista Espanola De Cardiologia (English Ed), 2010, 63, 46-53.	0.4	5
87	Analysis of the Plasma Proteome Associated with Acute Coronary Syndrome: Does a Permanent Protein Signature Exist in the Plasma of ACS Patients?. Journal of Proteome Research, 2010, 9, 4420-4432.	1.8	52
88	Obtención de un protocolo óptimo para el análisis proteómico de válvulas aórticas humanas sanas y estenóticas. Revista Espanola De Cardiologia, 2010, 63, 46-53.	0.6	9
89	A novel methodology for the analysis of membrane and cytosolic subâ€proteomes of erythrocytes by 2â€DE. Electrophoresis, 2009, 30, 4095-4108.	1.3	18
90	Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics, 2009, 9, 1982-1993.	1.3	23

#	Article	IF	CITATIONS
91	An optimum method designed for 2â€D DIGE analysis of human arterial intima and media layers isolated by laser microdissection. Proteomics - Clinical Applications, 2009, 3, 1174-1184.	0.8	14
92	Tissue proteomics in atherosclerosis: elucidating the molecular mechanisms of cardiovascular diseases. Expert Review of Proteomics, 2009, 6, 395-409.	1.3	24
93	Differential Role of Human Choline Kinase $\hat{l}\pm$ and \hat{l}^2 Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment. PLoS ONE, 2009, 4, e7819.	1.1	88
94	Depletion of High-Abundance Proteins in Plasma by Immunoaffinity Subtraction for Two-Dimensional Difference Gel Electrophoresis Analysis., 2007, 357, 351-364.		44
95	Characterization of Circulating Human Monocytes by Proteomic Analysis. , 2007, 357, 319-328.		8
96	Characterization of the Human Atheroma Plaque Secretome by Proteomic Analysis., 2007, 357, 141-150.		21
97	Circulating Human Monocytes in the Acute Coronary Syndrome Express a Characteristic Proteomic Profile. Journal of Proteome Research, 2007, 6, 876-886.	1.8	52
98	Vascular proteomics. Proteomics - Clinical Applications, 2007, 1, 1102-1122.	0.8	14
99	Atorvastatin modulates the profile of proteins released by human atherosclerotic plaques. European Journal of Pharmacology, 2007, 562, 119-129.	1.7	48
100	Comparison of the Protein Profile of Established and Regressed Hypertension-Induced Left Ventricular Hypertrophy. Journal of Proteome Research, 2006, 5, 404-413.	1.8	29
101	Proteomic Analysis of Early Left Ventricular Hypertrophy Secondary to Hypertension: Modulation by Antihypertensive Therapies. Journal of the American Society of Nephrology: JASN, 2006, 17, S159-S164.	3.0	24
102	Proteomic approach in the search of new cardiovascular biomarkers. Kidney International, 2005, 68, S103-S107.	2.6	16
103	Quest for Novel Cardiovascular Biomarkers by Proteomic Analysisâ€. Journal of Proteome Research, 2005, 4, 1181-1191.	1.8	80