Jeremy E Wilusz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/923487/publications.pdf Version: 2024-02-01

IEDEMY F WILLISZ

#	Article	IF	CITATIONS
1	CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Research, 2022, 50, e65-e65.	6.5	63
2	Biogenesis and Regulatory Roles of Circular RNAs. Annual Review of Cell and Developmental Biology, 2022, 38, 263-289.	4.0	75
3	TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nature Structural and Molecular Biology, 2021, 28, 62-70.	3.6	42
4	Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Reports, 2021, 22, e52072.	2.0	37
5	Engineering highly efficient backsplicing and translation of synthetic circRNAs. Molecular Therapy - Nucleic Acids, 2021, 23, 821-834.	2.3	36
6	Use of circular RNAs as markers of readthrough transcription to identify factors regulating cleavage/polyadenylation events. Methods, 2021, 196, 121-128.	1.9	2
7	A04â€Circhtt, a circular rna from the huntington's disease gene locus: functional characterization and possible implications for disease modulation. , 2021, , .		0
8	RNAi Screening to Identify Factors That Control Circular RNA Localization. Methods in Molecular Biology, 2021, 2209, 321-332.	0.4	5
9	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	1.8	13
10	The Integrator Complex in Transcription and Development. Trends in Biochemical Sciences, 2020, 45, 923-934.	3.7	35
11	Biogenesis and Functions of Circular RNAs Come into Focus. Trends in Cell Biology, 2020, 30, 226-240.	3.6	224
12	Ending on a high note: Downstream ORFs enhance mRNA translational output. EMBO Journal, 2020, 39, e105959.	3.5	5
13	An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Research, 2019, 47, 8755-8769.	6.5	130
14	The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22573-22582.	3.3	16
15	Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nature Communications, 2019, 10, 4317.	5.8	280
16	The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes and Development, 2019, 33, 1525-1538.	2.7	113
17	Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes and Development, 2019, 33, 871-885.	2.7	60
18	Circle the Wagons: Circular RNAs Control Innate Immunity. Cell, 2019, 177, 797-799.	13.5	14

JEREMY E WILUSZ

#	Article	IF	CITATIONS
19	Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 83-93.	2.0	4
20	The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes. Molecular Cell, 2019, 76, 738-752.e7.	4.5	150
21	A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1478.	3.2	356
22	Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors InÂVivo. Molecular Therapy - Nucleic Acids, 2018, 13, 89-98.	2.3	89
23	A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes and Development, 2018, 32, 639-644.	2.7	238
24	Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell, 2017, 67, 228-238.e5.	4.5	346
25	An Unchartered Journey for Ribosomes: Circumnavigating Circular RNAs to Produce Proteins. Molecular Cell, 2017, 66, 1-2.	4.5	62
26	Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes and Development, 2017, 31, 1717-1731.	2.7	322
27	Inducible Expression of Eukaryotic Circular RNAs from Plasmids. Methods in Molecular Biology, 2017, 1648, 143-154.	0.4	30
28	The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Molecular Cell, 2017, 68, 940-954.e3.	4.5	319
29	Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biology, 2017, 14, 1007-1017.	1.5	111
30	A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes and Development, 2016, 30, 1658-1670.	2.7	49
31	High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells. Molecular Cell, 2016, 64, 416-430.	4.5	226
32	Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 128-138.	0.9	182
33	Controlling translation via modulation of <scp>tRNA</scp> levels. Wiley Interdisciplinary Reviews RNA, 2015, 6, 453-470.	3.2	59
34	Repetitive elements regulate circular RNA biogenesis. Mobile Genetic Elements, 2015, 5, 39-45.	1.8	54
35	A 3′ Poly(A) Tract Is Required for LINE-1 Retrotransposition. Molecular Cell, 2015, 60, 728-741.	4.5	120
36	On-Enzyme Refolding Permits Small RNA and tRNA Surveillance by the CCA-Adding Enzyme. Cell, 2015, 160, 644-658	13.5	61

JEREMY E WILUSZ

#	Article	IF	CITATIONS
37	Combinatorial control of <i>Drosophila</i> circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes and Development, 2015, 29, 2168-2182.	2.7	419
38	Removing roadblocks to deep sequencing of modified RNAs. Nature Methods, 2015, 12, 821-822.	9.0	24
39	Nonsense-mediated RNA decay: at the â€ [~] cutting edge' of regulated snoRNA production: Figure 1 Genes and Development, 2014, 28, 2447-2449.	2.7	4
40	Short intronic repeat sequences facilitate circular RNA production. Genes and Development, 2014, 28, 2233-2247.	2.7	773
41	A Circuitous Route to Noncoding RNA. Science, 2013, 340, 440-441.	6.0	458
42	A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes and Development, 2012, 26, 2392-2407.	2.7	375
43	tRNAs Marked with CCACCA Are Targeted for Degradation. Science, 2011, 334, 817-821.	6.0	139
44	An unexpected ending: Noncanonical $3\hat{a}\in^2$ end processing mechanisms. Rna, 2010, 16, 259-266.	1.6	54
45	<i>MEN ε/β</i> nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 2009, 19, 347-359.	2.4	570
46	Long noncoding RNAs: functional surprises from the RNA world. Genes and Development, 2009, 23, 1494-1504.	2.7	2,032
47	3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA. Cell, 2008, 135, 919-932.	13.5	597
48	The Negative Regulator of Splicing Element of Rous Sarcoma Virus Promotes Polyadenylation. Journal of Virology, 2006, 80, 9634-9640.	1.5	23
49	Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Research, 2005, 33, 6547-6554.	6.5	23