List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9234408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability and error analysis of a splitting method using Robin – Robin coupling applied to a fluid–structure interaction problem. Numerical Methods for Partial Differential Equations, 2022, 38, 1396-1406.	3.6	2
2	<i>A posteriori</i> error estimates with boundary correction for a cut finite element method. IMA Journal of Numerical Analysis, 2022, 42, 333-362.	2.9	7
3	Gradient jump penaity stabilisation of spectral/ <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1568" altimg="si6.svg"><mml:mrow><mml:mi>h</mml:mi><mml:mi>p</mml:mi></mml:mrow> element discretisation for under-resolved turbulence simulations. Computer Methods in Applied</mmi:math 	6.6	13
4	From Estimates for the Smagorinsky Turbulence Model: Enhanced Stability Through Scale Separation and Numerical Stabilization. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	1.0	5
5	Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains. Numerische Mathematik, 2022, 150, 423-478.	1.9	8
6	Unfitted hybrid high-order methods for the wave equation. Computer Methods in Applied Mechanics and Engineering, 2022, 389, 114366.	6.6	3
7	Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty. ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56, 349-383.	1.9	1
8	An A Posteriori Error Estimate of the Outer Normal Derivative Using Dual Weights. SIAM Journal on Numerical Analysis, 2022, 60, 475-501.	2.3	1
9	A stabilized finite element method for inverse problems subject to the convection–diffusion equation. II: convection-dominated regime. Numerische Mathematik, 2022, 150, 769-801.	1.9	2
10	Hybrid coupling of finite element and boundary element methods using Nitsche's method and the Calderon projection. Numerical Algorithms, 2022, 91, 997-1019.	1.9	1
11	A mechanically consistent model for fluid–structure interactions with contact including seepage. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114637.	6.6	7
12	Explicit Time Stepping for the Wave Equation using CutFEM with Discrete Extension. SIAM Journal of Scientific Computing, 2022, 44, A1254-A1289.	2.8	6
13	Fully discrete loosely coupled Robin-Robin scheme for incompressible fluid–structure interaction: stability and error analysis. Numerische Mathematik, 2022, 151, 807-840.	1.9	2
14	An unfitted hybrid high-order method for the Stokes interface problem. IMA Journal of Numerical Analysis, 2021, 41, 2362-2387.	2.9	11
15	An Unfitted Hybrid High-Order Method with Cell Agglomeration for Elliptic Interface Problems. SIAM Journal of Scientific Computing, 2021, 43, A859-A882.	2.8	32
16	A Hybridized High-Order Method for Unique Continuation Subject to the Helmholtz Equation. SIAM Journal on Numerical Analysis, 2021, 59, 2368-2392.	2.3	5
17	Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, S969-S991.	1.9	10
18	Convergence Analysis of Hybrid High-Order Methods for the Wave Equation. Journal of Scientific Computing, 2021, 87, 1.	2.3	15

#	Article	IF	CITATIONS
19	Comparison of Shape Derivatives Using CutFEM for Ill-posed Bernoulli Free Boundary Problem. Journal of Scientific Computing, 2021, 88, 1.	2.3	1
20	Augmented Lagrangian Method for Thin Plates with Signorini Boundaries. Lecture Notes in Computational Science and Engineering, 2021, , 509-519.	0.3	1
21	3D-2D Stokes-Darcy Coupling for the Modelling of Seepage with an Application to Fluid-Structure Interaction with Contact. Lecture Notes in Computational Science and Engineering, 2021, , 215-223.	0.3	1
22	The Unfitted HHO Method for the Stokes Problem on Curved Domains. Lecture Notes in Computational Science and Engineering, 2021, , 389-397.	0.3	0
23	A Pressure-Robust Discretization of Oseen's Equation Using Stabilization in the Vorticity Equation. SIAM Journal on Numerical Analysis, 2021, 59, 2746-2774.	2.3	12
24	Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow. Journal of Numerical Mathematics, 2021, .	3.5	1
25	A stabilized cut streamline diffusion finite element method for convection–diffusion problems on surfaces. Computer Methods in Applied Mechanics and Engineering, 2020, 358, 112645.	6.6	6
26	Dirichlet boundary value correction using Lagrange multipliers. BIT Numerical Mathematics, 2020, 60, 235-260.	2.0	7
27	A stabilized finite element method for inverse problems subject to the convection–diffusion equation. I: diffusion-dominated regime. Numerische Mathematik, 2020, 144, 451-477.	1.9	8
28	Application of a minimal compatible element to incompressible and nearly incompressible continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 2020, 369, 113224.	6.6	5
29	A cut finite element method for a model of pressure in fractured media. Numerische Mathematik, 2020, 146, 783-818.	1.9	8
30	Cut Bogner-Fox-Schmit elements for plates. Advanced Modeling and Simulation in Engineering Sciences, 2020, 7, .	1.7	12
31	Weak Imposition of Signorini Boundary Conditions on the Boundary Element Method. SIAM Journal on Numerical Analysis, 2020, 58, 2334-2350.	2.3	2
32	A Fully Discrete Numerical Control Method for the Wave Equation. SIAM Journal on Control and Optimization, 2020, 58, 1519-1546.	2.1	6
33	Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow. Mathematical Models and Methods in Applied Sciences, 2020, 30, 847-865.	3.3	5
34	A finite element data assimilation method for the wave equation. Mathematics of Computation, 2020, 89, 1681-1709.	2.1	6
35	A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 531-564.	1.9	25
36	A stable cut finite element method for partial differential equations on surfaces: The Helmholtz–Beltrami operator. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112803.	6.6	3

#	Article	IF	CITATIONS
37	Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime. Inverse Problems, 2020, 36, 085003.	2.0	5
38	Cut finite elements for convection in fractured domains. Computers and Fluids, 2019, 179, 726-734.	2.5	18
39	Hybridized CutFEM for Elliptic Interface Problems. SIAM Journal of Scientific Computing, 2019, 41, A3354-A3380.	2.8	12
40	A Cut Cell Hybrid High-Order Method for Elliptic Problems with Curved Boundaries. Lecture Notes in Computational Science and Engineering, 2019, , 173-181.	0.3	3
41	A cut finite element method for elliptic bulk problems with embedded surfaces. GEM - International Journal on Geomathematics, 2019, 10, 10.	1.6	3
42	Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 462-479.	6.6	13
43	Boundary Element Methods with Weakly Imposed Boundary Conditions. SIAM Journal of Scientific Computing, 2019, 41, A1357-A1384.	2.8	4
44	Stabilized CutFEM for the convection problem on surfaces. Numerische Mathematik, 2019, 141, 103-139.	1.9	9
45	Augmented Lagrangian finite element methods for contact problems. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53, 173-195.	1.9	15
46	Finite element approximation of the Laplace–Beltrami operator on a surface with boundary. Numerische Mathematik, 2019, 141, 141-172.	1.9	12
47	Primal Dual Mixed Finite Element Methods for Indefinite Advection-Diffusion Equations. SIAM Journal on Numerical Analysis, 2019, 57, 2785-2811.	2.3	1
48	A simple finite element method for elliptic bulk problems with embedded surfaces. Computational Geosciences, 2019, 23, 189-199.	2.4	9
49	A Cut Finite Element Method with Boundary Value Correction for the Incompressible Stokes Equations. Lecture Notes in Computational Science and Engineering, 2019, , 183-192.	0.3	2
50	Unique continuation for the Helmholtz equation using stabilized finite element methods. Journal Des Mathematiques Pures Et Appliquees, 2019, 129, 1-22.	1.6	12
51	Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems. IMA Journal of Numerical Analysis, 2018, 38, 646-668.	2.9	23
52	Augmented Lagrangian and Galerkin leastâ€squares methods for membrane contact. International Journal for Numerical Methods in Engineering, 2018, 114, 1179-1191.	2.8	7
53	Data assimilation for the heat equation using stabilized finite element methods. Numerische Mathematik, 2018, 139, 505-528.	1.9	21
54	A simple approach for finite element simulation of reinforced plates. Finite Elements in Analysis and Design, 2018, 142, 51-60.	3.2	3

#	Article	IF	CITATIONS
55	Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization. Inverse Problems, 2018, 34, 035004.	2.0	26
56	Shape optimization using the cut finite element method. Computer Methods in Applied Mechanics and Engineering, 2018, 328, 242-261.	6.6	66
57	Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 2247-2282.	1.9	32
58	Fully discrete finite element data assimilation method for the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 2065-2082.	1.9	14
59	Primal-Dual Mixed Finite Element Methods for the Elliptic Cauchy Problem. SIAM Journal on Numerical Analysis, 2018, 56, 3480-3509.	2.3	8
60	An Unfitted Hybrid High-Order Method for Elliptic Interface Problems. SIAM Journal on Numerical Analysis, 2018, 56, 1525-1546.	2.3	49
61	A cut discontinuous Galerkin method for the Laplace–Beltrami operator. IMA Journal of Numerical Analysis, 2017, 37, 138-169.	2.9	34
62	Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes. Numerische Mathematik, 2017, 135, 521-545.	1.9	33
63	Error estimates for transport problems with high Péclet number using a continuous dependence assumption. Journal of Computational and Applied Mathematics, 2017, 309, 267-286.	2.0	3
64	A cut finite element method for the Bernoulli free boundary value problem. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 598-618.	6.6	13
65	Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 487-507.	1.9	15
66	Blending low-order stabilised finite element methods: A positivity-preserving local projection method for the convection–diffusion equation. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 1169-1193.	6.6	12
67	Fictitious domain method with boundary value correction using penalty-free Nitsche method. Journal of Numerical Mathematics, 2017, .	3.5	2
68	A nonlinear consistent penalty method weakly enforcing positivity in the finite element approximation of the transport equation. Computer Methods in Applied Mechanics and Engineering, 2017, 320, 122-132.	6.6	6
69	The elliptic Cauchy problem revisited: Control of boundary data in natural norms. Comptes Rendus Mathematique, 2017, 355, 479-484.	0.3	4
70	Software frameworks for integral equations in electromagnetic scattering based on Calderón identities. Computers and Mathematics With Applications, 2017, 74, 2897-2914.	2.7	25
71	The Penalty-Free Nitsche Method and Nonconforming Finite Elements for the Signorini Problem. SIAM Journal on Numerical Analysis, 2017, 55, 2523-2539.	2.3	13
72	Galerkin least squares finite element method for the obstacle problem. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 362-374.	6.6	16

#	Article	IF	CITATIONS
73	Stabilized nonconforming finite element methods for data assimilation in incompressible flows. Mathematics of Computation, 2017, 87, 1029-1050.	2.1	5
74	Deriving Robust Unfitted Finite Element Methods from Augmented Lagrangian Formulations. Lecture Notes in Computational Science and Engineering, 2017, , 1-24.	0.3	9
75	A cut finite element method with boundary value correction. Mathematics of Computation, 2017, 87, 633-657.	2.1	44
76	Penalty-Free Nitsche Method for Interface Problems. Lecture Notes in Computational Science and Engineering, 2017, , 183-210.	0.3	2
77	Linear continuous interior penalty finite element method for Helmholtz equation With High Wave Number: One-Dimensional Analysis. Numerical Methods for Partial Differential Equations, 2016, 32, 1378-1410.	3.6	20
78	A vertex-based scheme on polyhedral meshes for advection–reaction equations with sub-mesh stabilization. Computers and Mathematics With Applications, 2016, 72, 2057-2071.	2.7	6
79	Full gradient stabilized cut finite element methods for surface partial differential equations. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 278-296.	6.6	24
80	A stabilized nonconforming finite element method for the elliptic Cauchy problem. Mathematics of Computation, 2016, 86, 75-96.	2.1	16
81	Cut finite element methods for coupled bulk–surface problems. Numerische Mathematik, 2016, 133, 203-231.	1.9	39
82	A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA Journal of Numerical Analysis, 2016, 36, 770-795.	2.9	33
83	Local CIP Stabilization for Composite Finite Elements. SIAM Journal on Numerical Analysis, 2016, 54, 1967-1992.	2.3	5
84	Stabilised Finite Element Methods for Ill-Posed Problems with Conditional Stability. Lecture Notes in Computational Science and Engineering, 2016, , 93-127.	0.3	5
85	A Stabilized Cut Finite Element Method for the Three Field Stokes Problem. SIAM Journal of Scientific Computing, 2015, 37, A1705-A1726.	2.8	18
86	Error estimates for forward Euler shock capturing finite element approximations of the one-dimensional Burgers' equation. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2015-2042.	3.3	2
87	CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 2015, 104, 472-501.	2.8	479
88	A monotonicity preserving, nonlinear, finite element upwind method for the transport equation. Applied Mathematics Letters, 2015, 49, 141-146.	2.7	12
89	Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes' equations at high Reynolds number. Computer Methods in Applied Mechanics and Engineering, 2015, 288, 2-23.	6.6	10
90	A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator. Computer Methods in Applied Mechanics and Engineering, 2015, 285, 188-207.	6.6	62

#	Article	IF	CITATIONS
91	Robust error estimates in weak norms for advection dominated transport problems with rough data. Mathematical Models and Methods in Applied Sciences, 2014, 24, 2663-2684.	3.3	7
92	Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries. Numerical Methods for Partial Differential Equations, 2014, 30, 567-592.	3.6	18
93	Stabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part II: Hyperbolic Equations. SIAM Journal of Scientific Computing, 2014, 36, A1911-A1936.	2.8	17
94	Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes' problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48, 859-874.	1.9	109
95	Explicit strategies for incompressible fluidâ€structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. International Journal for Numerical Methods in Engineering, 2014, 97, 739-758.	2.8	43
96	Error estimates for stabilized finite element methods applied to ill-posed problems. Comptes Rendus Mathematique, 2014, 352, 655-659.	0.3	27
97	An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes. Computer Methods in Applied Mechanics and Engineering, 2014, 279, 497-514.	6.6	84
98	Stabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part I: Elliptic Equations. SIAM Journal of Scientific Computing, 2013, 35, A2752-A2780.	2.8	42
99	Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46, 681-707.	1.9	13
100	A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions. SIAM Journal on Numerical Analysis, 2012, 50, 1959-1981.	2.3	70
101	Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 2012, 62, 328-341.	2.1	301
102	ANALYSIS OF THE SPACE SEMI-DISCRETIZED SUPG METHOD FOR TRANSIENT CONVECTION–DIFFUSION EQUATIONS. Mathematical Models and Methods in Applied Sciences, 2011, 21, 2049-2068.	3.3	16
103	Bubble stabilized discontinuous Galerkin methods onÂconforming and non-conforming meshes. Calcolo, 2011, 48, 189-209.	1.1	1
104	A hierarchical NXFEM for fictitious domain simulations. International Journal for Numerical Methods in Engineering, 2011, 86, 549-559.	2.8	15
105	Analysis of the PSPG method for the transient Stokes' problem. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2882-2890.	6.6	11
106	A finite element time relaxation method. Comptes Rendus Mathematique, 2011, 349, 353-356.	0.3	7
107	Duality Based A Posteriori Error Estimation for Quasi-Periodic Solutions Using Time Averages. SIAM Journal of Scientific Computing, 2011, 33, 2199-2216.	2.8	11
108	Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method. Lecture Notes in Computational Science and Engineering, 2011, , 227-282.	0.3	15

#	Article	IF	CITATIONS
109	Crank–Nicolson finite element methods using symmetric stabilization with an application to optimal control problems subject to transient advection–diffusion equations. Communications in Mathematical Sciences, 2011, 9, 319-329.	1.0	11
110	Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems. Numerische Mathematik, 2010, 116, 213-241.	1.9	7
111	Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 2680-2686.	6.6	185
112	Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations. Journal of Scientific Computing, 2010, 43, 293-312.	2.3	24
113	Consistent SUPG-method for transient transport problems: Stability and convergence. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1114-1123.	6.6	76
114	Ghost penalty. Comptes Rendus Mathematique, 2010, 348, 1217-1220.	0.3	230
115	BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES' PROBLEM. Mathematical Models and Methods in Applied Sciences, 2010, 20, 297-313.	3.3	8
116	Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems. IMA Journal of Numerical Analysis, 2010, 30, 870-885.	2.9	41
117	Explicit Runge–Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems. SIAM Journal on Numerical Analysis, 2010, 48, 2019-2042.	2.3	62
118	Quantitative benchmark computations of twoâ€dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 2009, 60, 1259-1288.	1.6	396
119	Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 766-784.	6.6	146
120	Finite element methods with symmetric stabilization for the transient convection–diffusion–reaction equation. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2508-2519.	6.6	29
121	A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 3352-3360.	6.6	115
122	Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis. SIAM Journal on Numerical Analysis, 2009, 47, 409-439.	2.3	35
123	A Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation. SIAM Journal on Numerical Analysis, 2009, 47, 3584-3607.	2.3	20
124	Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2009, 47, 508-533.	2.3	17
125	Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem. Numerical Methods for Partial Differential Equations, 2008, 24, 127-143.	3.6	44
126	Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment. Comptes Rendus Mathematique, 2008, 346, 103-106.	0.3	7

#	Article	IF	CITATIONS
127	Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. Comptes Rendus Mathematique, 2008, 346, 1013-1016.	0.3	22
128	Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements. Applied Numerical Mathematics, 2008, 58, 1704-1719.	2.1	35
129	A Continuous Interior Penalty Method for Viscoelastic Flows. SIAM Journal of Scientific Computing, 2008, 30, 1156-1177.	2.8	20
130	Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA Journal of Numerical Analysis, 2008, 29, 284-314.	2.9	18
131	Continuous interior penalty \$hp\$-finite element methods for advection and advection-diffusion equations. Mathematics of Computation, 2007, 76, 1119-1141.	2.1	128
132	A continuous finite element method with face penalty to approximate Friedrichs' systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2007, 41, 55-76.	1.9	13
133	A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations. IMA Journal of Numerical Analysis, 2007, 27, 151-171.	2.9	22
134	Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 853-866.	6.6	148
135	Interior penalty variational multiscale method for the incompressible Navier–Stokes equation: Monitoring artificial dissipation. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 4045-4058.	6.6	26
136	A unified stabilized method for Stokes' and Darcy's equations. Journal of Computational and Applied Mathematics, 2007, 198, 35-51.	2.0	143
137	Stabilized explicit coupling for fluid–structure interaction using Nitsche's method. Comptes Rendus Mathematique, 2007, 345, 467-472.	0.3	32
138	The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders. Comptes Rendus Mathematique, 2007, 345, 599-602.	0.3	8
139	Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numerische Mathematik, 2007, 107, 39-77.	1.9	80
140	Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems. Journal of Scientific Computing, 2007, 33, 183-208.	2.3	16
141	On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws. BIT Numerical Mathematics, 2007, 47, 715-733.	2.0	27
142	Continuous Interior Penalty Finite Element Method for Oseen's Equations. SIAM Journal on Numerical Analysis, 2006, 44, 1248-1274.	2.3	131
143	Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method. SIAM Journal on Numerical Analysis, 2006, 43, 2544-2566.	2.3	192
144	A Domain Decomposition Method Based on Weighted Interior Penalties for Advectionâ€Diffusionâ€Reaction Problems. SIAM Journal on Numerical Analysis, 2006, 44, 1612-1638.	2.3	81

#	Article	IF	CITATIONS
145	A stabilized non-conforming finite element method for incompressible flow. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 2881-2899.	6.6	30
146	Edge stabilization for the generalized Stokes problem: A continuous interior penalty method. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 2393-2410.	6.6	82
147	Continuous Interior Penalty hp-Finite Element Methods for Transport Operators. , 2006, , 504-511.		5
148	A Face Penalty Method for the Three Fields Stokes Equation Arising from Oldroyd-B Viscoelastic Flows. , 2006, , 487-494.		0
149	Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Mathematics of Computation, 2005, 74, 1637-1653.	2.1	90
150	Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numerical Methods for Partial Differential Equations, 2005, 21, 986-997.	3.6	77
151	A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty. SIAM Journal on Numerical Analysis, 2005, 43, 2012-2033.	2.3	91
152	A FINITE ELEMENT LEVEL SET METHOD FOR VISCOUS FREE-SURFACE FLOWS. , 2005, , .		5
153	Bunsen flame simulation by finite elements on adaptively refined, unstructured triangulations. Combustion Theory and Modelling, 2004, 8, 65-84.	1.9	12
154	Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model. Journal of Computational Physics, 2004, 195, 153-174.	3.8	22
155	Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1437-1453.	6.6	247
156	Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. Comptes Rendus Mathematique, 2004, 338, 641-646.	0.3	72
157	The Edge Stabilization Method for Finite Elements in CFD. , 2004, , 196-203.		4
158	Convergence of the finite element method applied to an anisotropic phase-field model. Annales Mathematiques Blaise Pascal, 2004, 11, 67-94.	0.1	2
159	Existence of solutions to an anisotropic phase-field model. Mathematical Methods in the Applied Sciences, 2003, 26, 1137-1160.	2.3	11
160	An adaptive finite element method with crosswind diffusion for low Mach, steady, laminar combustion. Journal of Computational Physics, 2003, 188, 472-492.	3.8	10
161	Anisotropic, adaptative finite elements for the computation of a solutal dendrite. Interfaces and Free Boundaries, 2003, 5, 103-128.	0.8	15
162	Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection–diffusion-reaction equation. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 3833-3855.	6.6	77

#	Article	IF	CITATIONS
163	Adaptive finite element methods for compressible flow. Computer Methods in Applied Mechanics and Engineering, 2000, 190, 1137-1162.	6.6	9
164	ADAPTIVE FINITE ELEMENT METHODS FOR COMPRESSIBLE TWO-PHASE FLOW. Mathematical Models and Methods in Applied Sciences, 2000, 10, 963-989.	3.3	11
165	Numerical analysis of two operator splitting methods for an hyperbolic system of conservation laws with stiff relaxation terms. Computer Methods in Applied Mechanics and Engineering, 1995, 128, 291-314.	6.6	14
166	Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain. Communications on Applied Mathematics and Computation, 0, , 1.	1.7	12
167	Weighted Error Estimates for Transient Transport Problems Discretized Using Continuous Finite Elements with Interior Penalty Stabilization on the Gradient Jumps. Vietnam Journal of Mathematics, 0, , 1.	0.8	3