
Oliver Stork

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allostatic gene regulation of inhibitory synaptic factors in the rat ventral hippocampus in a juvenile/adult stress model of psychopathology. European Journal of Neuroscience, 2022, 55, 2142-2153.	2.6	5
2	Antibiotic-induced gut dysbiosis leads to activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus. Brain, Behavior, and Immunity, 2022, 99, 203-217.	4.1	21
3	Depletion of dietary phytoestrogens reduces hippocampal plasticity and contextual fear memory stability in adult male mouse. Nutritional Neuroscience, 2021, 24, 951-962.	3.1	8
4	Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neuroscience and Biobehavioral Reviews, 2021, 122, 229-244.	6.1	16
5	Short antisense oligonucleotides alleviate the pleiotropic toxicity of RNA harboring expanded CGG repeats. Nature Communications, 2021, 12, 1265.	12.8	31
6	Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Scientific Reports, 2021, 11, 6742.	3.3	8
7	To err is (not only) human: Mechanisms of post-error attentional regulation illuminated in mice. Neuron, 2021, 109, 1074-1076.	8.1	0
8	The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling. International Journal of Molecular Sciences, 2021, 22, 7944.	4.1	7
9	Transgenic modeling of Ndr2 gene amplification reveals disturbance of hippocampus circuitry and function. IScience, 2021, 24, 102868.	4.1	3
10	Reducing glutamic acid decarboxylase in the dorsal dentate gyrus attenuates juvenile stress induced emotional and cognitive deficits. Neurobiology of Stress, 2021, 15, 100350.	4.0	12
11	MeCP2 haplodeficiency and early-life stress interaction on anxiety-like behavior in adolescent female mice. Journal of Neurodevelopmental Disorders, 2021, 13, 59.	3.1	6
12	Active resilience in response to traumatic stress. , 2020, , 95-106.		1
13	Dietary phytoestrogens modulate aggression and activity in social behavior circuits of male mice. Hormones and Behavior, 2020, 119, 104637.	2.1	8
14	Male-specific features are reduced in Mecp2-null mice: analyses of vasopressinergic innervation, pheromone production and social behaviour. Brain Structure and Function, 2020, 225, 2219-2238.	2.3	6
15	Region-specific involvement of interneuron subpopulations in trauma-related pathology and resilience. Neurobiology of Disease, 2020, 143, 104974.	4.4	15
16	Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Structure and Function, 2020, 225, 1719-1742.	2.3	7
17	Persistent increase in ventral hippocampal longâ€ŧerm potentiation by juvenile stress: A role for astrocytic glutamine synthetase. Glia, 2019, 67, 2279-2293.	4.9	10
18	The role of the GABAA receptor Alpha 1 subunit in the ventral hippocampus in stress resilience. Scientific Reports, 2019, 9, 13513.	3.3	15

#	Article	IF	CITATIONS
19	Lack of MeCP2 leads to region-specific increase of doublecortin in the olfactory system. Brain Structure and Function, 2019, 224, 1647-1658.	2.3	8
20	P.2.06 Differential role of GABAergic alterations in the dorsal and ventral dentate gyrus, and its impact on childhood stress. European Neuropsychopharmacology, 2019, 29, S658-S659.	0.7	0
21	SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications, 2019, 10, 5448.	12.8	64
22	Hippocampal network oscillations at the interplay between innate anxiety and learned fear. Psychopharmacology, 2019, 236, 321-338.	3.1	52
23	Animal models of PTSD: a challenge to be met. Molecular Psychiatry, 2019, 24, 1135-1156.	7.9	138
24	Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron, 2018, 97, 1110-1125.e14.	8.1	68
25	Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiology of Learning and Memory, 2018, 154, 37-53.	1.9	26
26	Filamin A Phosphorylation at Serine 2152 by the Serine/Threonine Kinase Ndr2 Controls TCR-Induced LFA-1 Activation in T Cells. Frontiers in Immunology, 2018, 9, 2852.	4.8	20
27	Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders. Neural Plasticity, 2018, 2018, 1-3.	2.2	7
28	Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Structure and Function, 2018, 223, 3423-3445.	2.3	21
29	Ndr2 Kinase Controls Neurite Outgrowth and Dendritic Branching Through α1 Integrin Expression. Frontiers in Molecular Neuroscience, 2018, 11, 66.	2.9	5
30	GAD65 Promoter Polymorphism rs2236418 Modulates Harm Avoidance in Women via Inhibition/Excitation Balance in the Rostral ACC. Journal of Neuroscience, 2018, 38, 5067-5077.	3.6	17
31	Receptor tyrosine kinase inhibition by regorafenib/sorafenib inhibits growth and invasion of meningioma cells. European Journal of Cancer, 2017, 73, 9-21.	2.8	27
32	Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neuroscience and Biobehavioral Reviews, 2017, 74, 21-43.	6.1	46
33	Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome. Human Molecular Genetics, 2017, 26, 2133-2145.	2.9	15
34	HIPP neurons in the dentate gyrus mediate the cholinergic modulation of background context memory salience. Nature Communications, 2017, 8, 189.	12.8	54
35	Circadian Rhythms in Fear Conditioning: An Overview of Behavioral, Brain System, and Molecular Interactions. Neural Plasticity, 2017, 2017, 1-12.	2.2	27
36	Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genetics, 2017, 13, e1006684.	3.5	24

#	Article	IF	CITATIONS
37	Integrin Activation Through the Hematopoietic Adapter Molecule ADAP Regulates Dendritic Development of Hippocampal Neurons. Frontiers in Molecular Neuroscience, 2016, 9, 91.	2.9	5
38	A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics, 2016, 12, e1005907.	3.5	36
39	Shifts in excitatory/inhibitory balance by juvenile stress: A role for neuron–astrocyte interaction in the dentate gyrus. Clia, 2016, 64, 911-922.	4.9	30
40	Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence. Cerebral Cortex, 2016, 26, 2325-2340.	2.9	79
41	Quantitative proteomics reveals protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse. Behavioural Brain Research, 2016, 303, 208-217.	2.2	8
42	Individual phases of contextual fear conditioning differentially modulate dorsal and ventral hippocampal GluA1-3, GluN1-containing receptor complexes and subunits. Hippocampus, 2015, 25, 1501-1516.	1.9	5
43	Identification and Characterization of GABAergic Projection Neurons from Ventral Hippocampus to Amygdala. Brain Sciences, 2015, 5, 299-317.	2.3	20
44	Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala. Frontiers in Neurology, 2015, 6, 171.	2.4	9
45	Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice. Physiology and Behavior, 2015, 143, 10-14.	2.1	12
46	Long-term changes in the CA3 associative network of fear-conditioned mice. Stress, 2015, 18, 188-197.	1.8	5
47	Genetic analysis of the glyoxalase system in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 59, 105-110.	4.8	12
48	The <scp>GAD65</scp> knock out mouse – a model for <scp>GABAergic</scp> processes in fear―and stress―induced psychopathology. Genes, Brain and Behavior, 2015, 14, 37-45.	2.2	50
49	5-HT receptor-mediated modulation of granule cell inhibition after juvenile stress recovers after a second exposure to adult stress. Neuroscience, 2015, 293, 67-79.	2.3	16
50	Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone. Stress, 2015, 18, 319-327.	1.8	25
51	Transcriptional Regulation of Glutamic Acid Decarboxylase in the Male Mouse Amygdala by Dietary Phytoâ€Oestrogens. Journal of Neuroendocrinology, 2015, 27, 285-292.	2.6	5
52	Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse. Behavioural Brain Research, 2015, 280, 45-50.	2.2	8
53	Contextual fear conditioning modulates hippocampal AMPA-, GluN1- and serotonin receptor 5-HT1A-containing receptor complexes. Behavioural Brain Research, 2015, 278, 44-54.	2.2	6
54	Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning. Frontiers in Behavioral Neuroscience, 2014, 8, 3.	2.0	38

#	Article	IF	CITATIONS
55	GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology. Frontiers in Behavioral Neuroscience, 2014, 8, 265.	2.0	34
56	The Serine/Threonine Kinase Ndr2 Controls Integrin Trafficking and Integrin-Dependent Neurite Growth. Journal of Neuroscience, 2014, 34, 5342-5354.	3.6	45
57	<scp>NCAM</scp> deficiency in the mouse forebrain impairs innate and learned avoidance behaviours. Genes, Brain and Behavior, 2014, 13, 468-477.	2.2	11
58	The GABA-synthetic enzyme GAD65 controls circadian activation of conditioned fear pathways. Behavioural Brain Research, 2014, 260, 92-100.	2.2	17
59	Glutamic acid decarboxylase 67 haplodeficiency impairs social behavior in mice. Genes, Brain and Behavior, 2014, 13, 439-450.	2.2	44
60	Hippocampal protein kinase C family members in spatial memory retrieval in the mouse. Behavioural Brain Research, 2014, 258, 202-207.	2.2	12
61	Stress-induced metaplasticity: From synapses to behavior. Neuroscience, 2013, 250, 112-120.	2.3	100
62	Distinct set of kinases induced after retrieval of spatial memory discriminate memory modulation processes in the mouse hippocampus. Hippocampus, 2013, 23, 672-683.	1.9	8
63	Long-Lasting Increase of Corticosterone After Fear Memory Reactivation: Anxiolytic Effects and Network Activity Modulation in the Ventral Hippocampus. Neuropsychopharmacology, 2013, 38, 386-394.	5.4	45
64	mTORC1 Inhibitors Suppress Meningioma Growth in Mouse Models. Clinical Cancer Research, 2013, 19, 1180-1189.	7.0	85
65	Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice. Stress, 2013, 16, 638-646.	1.8	5
66	Hippocampal Hyperexcitability Underlies Enhanced Fear Memories in Tg <i>NTRK3</i> , a Panic Disorder Mouse Model. Journal of Neuroscience, 2013, 33, 15259-15271.	3.6	30
67	The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells. PLoS ONE, 2013, 8, e63067.	2.5	15
68	Circadian Modulation of Anxiety: A Role for Somatostatin in the Amygdala. PLoS ONE, 2013, 8, e84668.	2.5	17
69	Are NCAM deficient mice an animal model for schizophrenia?. Frontiers in Behavioral Neuroscience, 2012, 6, 43.	2.0	22
70	Synaptology of ventral CA1 and subiculum projections to the basomedial nucleus of the amygdala in the mouse: relation to GABAergic interneurons. Brain Structure and Function, 2012, 217, 5-17.	2.3	19
71	Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala. PLoS ONE, 2011, 6, e18020.	2.5	15
72	Role of the neural cell adhesion molecule (NCAM) in amygdalo-hippocampal interactions and salience determination of contextual fear memory. International Journal of Neuropsychopharmacology, 2010, 13, 661-674.	2.1	22

#	Article	IF	CITATIONS
73	Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiology of Learning and Memory, 2010, 94, 117-126.	1.9	43
74	Deficiency of the 65 kDa Isoform of Glutamic Acid Decarboxylase Impairs Extinction of Cued But Not Contextual Fear Memory. Journal of Neuroscience, 2009, 29, 15713-15720.	3.6	90
75	Behavioral effects and pattern of brain c-fos mRNA induced by 2,5-dihydro-2,4,5-trimethylthiazoline, a component of fox feces odor in GAD67-GFP knock-in C57BL/6 mice. Behavioural Brain Research, 2009, 202, 218-224.	2.2	33
76	Role of the somatostatin system in contextual fear memory and hippocampal synaptic plasticity. Learning and Memory, 2008, 15, 252-260.	1.3	35
77	Critical role of the 65-kDa isoform of glutamic acid decarboxylase in consolidation and generalization of Pavlovian fear memory. Learning and Memory, 2008, 15, 163-171.	1.3	95
78	Identification of a Neuropeptide S Responsive Circuitry Shaping Amygdala Activity via the Endopiriform Nucleus. PLoS ONE, 2008, 3, e2695.	2.5	101
79	Theta resynchronization during reconsolidation of remote contextual fear memory. NeuroReport, 2007, 18, 1107-1111.	1.2	55
80	Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory. European Journal of Neuroscience, 2007, 25, 1823-1831.	2.6	98
81	Genes and neurons: molecular insights to fear and anxiety. Genes, Brain and Behavior, 2006, 5, 34-47.	2.2	19
82	Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus, 2005, 15, 874-880.	1.9	129
83	Neuronal Functions of the Novel Serine/Threonine Kinase Ndr2. Journal of Biological Chemistry, 2004, 279, 45773-45781.	3.4	49
84	Altered conditioned fear behavior in glutamate decarboxylase 65 null mutant mice. Genes, Brain and Behavior, 2003, 2, 65-70.	2.2	61
85	Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval. Science, 2003, 301, 846-850.	12.6	662
86	Generalisation of conditioned fear and its behavioural expression in mice. Behavioural Brain Research, 2003, 145, 89-98.	2.2	137
87	Cell Adhesion Molecules: Key Players in Memory Consolidation?. Physiology, 2003, 18, 147-150.	3.1	26
88	Contribution of NR2B Subunits to Synaptic Transmission in Amygdaloid Interneurons. Journal of Neuroscience, 2003, 23, 2549-2556.	3.6	46
89	Genes and Mechanisms in the Amygdala Involved in the Formation of Fear Memory. Annals of the New York Academy of Sciences, 2003, 985, 92-105.	3.8	61
90	Resistance to alcohol withdrawal-induced behaviour in Fyn transgenic mice and its reversal by ifenprodil. Molecular Brain Research, 2002, 105, 126-135.	2.3	19

#	Article	IF	CITATIONS
91	Reduction of extracellular GABA in the mouse amygdala during and following confrontation with a conditioned fear stimulus. Neuroscience Letters, 2002, 327, 138-142.	2.1	78
92	Fear memory and the amygdala: insights from a molecular perspective. Cell and Tissue Research, 2002, 310, 271-277.	2.9	20
93	Cellular processes in the amygdala: gates to emotional memory?. Zoology, 2001, 104, 232-240.	1.2	6
94	Identification of Genes Expressed in the Amygdala During the Formation of Fear Memory. Learning and Memory, 2001, 8, 209-219.	1.3	73
95	Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. European Journal of Neuroscience, 2000, 12, 3291-3306.	2.6	115
96	Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Research, 2000, 865, 45-58.	2.2	177
97	Memory formation and the regulation of gene expression. Cellular and Molecular Life Sciences, 1999, 55, 575-592.	5.4	85
98	Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. Journal of Neurobiology, 1999, 40, 343-355.	3.6	113
99	Increased Intermale Aggression and Neuroendocrine Response in Mice Deficient for the Neural Cell Adhesion Molecule (NCAM). European Journal of Neuroscience, 1997, 9, 1117-1125.	2.6	101
100	Haloperidol activates tyrosine hydroxylase gene-expression in the rat substantia nigra, pars reticulata. Brain Research, 1994, 633, 213-222.	2.2	30
101	Increase of tyrosine hydroxylase and its mRNA in the rat substantia nigra pars reticulata by diazepam and picrotoxin. Neuroscience Research, 1994, 19, 73-80.	1.9	8
102	6-Hydroxydopamine Lesion Prevents Induction of Tyrosine Hydroxylase by Haloperidol in the Rat Substantia Nigra, Pars Reticulata Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1994, 70, 92-95.	3.8	0