Bruce Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233399/publications.pdf

Version: 2024-02-01

172	30,162	65	171
papers	citations	h-index	g-index
175	175	175	14744
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Study of 72 Pulsars Discovered in the PALFA Survey: Timing Analysis, Glitch Activity, Emission Variability, and a Pulsar in an Eccentric Binary. Astrophysical Journal, 2022, 924, 135.	4.5	15
2	Performance of random template banks. Physical Review D, 2022, 105, .	4.7	4
3	Einstein@Home All-sky Search for Continuous Gravitational Waves in LIGO O2 Public Data. Astrophysical Journal, 2021, 909, 79.	4.5	39
4	Optimal template banks. Physical Review D, 2021, 104, .	4.7	14
5	Einstein@Home discovery of the gamma-ray millisecond pulsar PSR J2039–5617 confirms its predicted redback nature. Monthly Notices of the Royal Astronomical Society, 2021, 502, 915-934.	4.4	35
6	The Optimal Lattice Quantizer in Nine Dimensions. Annalen Der Physik, 2021, 533, 2100259.	2.4	3
7	New Searches for Continuous Gravitational Waves from Seven Fast Pulsars. Astrophysical Journal, 2021, 923, 85. Template banks based on <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>4.5</td><td>14</td></mml:math>	4.5	14
8	display="inline"> <mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:msup></mml:mrow>	4.7	U
9	Physical Review D, 2021, 104, . Gravitational wave stochastic background from cosmological particle decay. Physical Review Research, 2020, 2, .	3.6	2
10	Search for Continuous Gravitational Waves from the Central Compact Objects in Supernova Remnants Cassiopeia A, Vela Jr., and G347.3–0.5. Astrophysical Journal, 2020, 897, 22.	4.5	28
11	Exploiting Orbital Constraints from Optical Data to Detect Binary Gamma-Ray Pulsars. Astrophysical Journal, 2020, 901, 156.	4.5	20
12	Discovery of a Gamma-Ray Black Widow Pulsar by GPU-accelerated Einstein@Home. Astrophysical Journal Letters, 2020, 902, L46.	8.3	42
13	The Nobel Lectures on Gravitational Waves and LIGO. Annalen Der Physik, 2019, 531, 1800442.	2.4	1
14	Detection and Timing of Gamma-Ray Pulsations from the 707 Hz Pulsar J0952â^'0607. Astrophysical Journal, 2019, 883, 42.	4.5	22
15	Mass Measurements for Two Binary Pulsars Discovered in the PALFA Survey. Astrophysical Journal, 2019, 881, 165.	4.5	21
16	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
17	Spherical ansatz for parameter-space metrics. Physical Review D, 2019, 100, .	4.7	14
18	PALFA Discovery of a Highly Relativistic Double Neutron Star Binary. Astrophysical Journal Letters, 2018, 854, L22.	8.3	119

#	Article	IF	Citations
19	Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar. Science Advances, 2018, 4, eaao7228.	10.3	20
20	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
21	The Implementation of a Fast-folding Pipeline for Long-period Pulsar Searching in the PALFA Survey. Astrophysical Journal, 2018, 861, 44.	4.5	27
22	THE EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY. I. SEARCH METHODS, SENSITIVITY, AND DISCOVERY OF NEW YOUNG GAMMA-RAY PULSARS. Astrophysical Journal, 2017, 834, 106.	4.5	49
23	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
24	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
25	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
26	TIMING OF 29 PULSARS DISCOVERED IN THE PALFA SURVEY. Astrophysical Journal, 2017, 834, 137.	4.5	25
27	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
28	TWO LONG-TERM INTERMITTENT PULSARS DISCOVERED IN THE PALFA SURVEY. Astrophysical Journal, 2017, 834, 72.	4.5	43
29	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
30	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
31	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
32	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
33	Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run. Physical Review D, 2016, 94, .	4.7	13
34	Einstein@Home search for continuous gravitational waves from Cassiopeia A. Physical Review D, 2016, 94, .	4.7	28
35	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
36	THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR. Astrophysical Journal Letters, 2016, 832, L15.	8.3	27

#	Article	IF	CITATIONS
37	From Einstein's general theory of relativity to gravitationalâ€wave astronomy. Annalen Der Physik, 2016, 528, 229-230.	2.4	O
38	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
39	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
40	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
41	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
42	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
43	EINSTEIN@HOME DISCOVERY OF A DOUBLE NEUTRON STAR BINARY IN THE PALFA SURVEY. Astrophysical Journal, 2016, 831, 150.	4.5	52
44	Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data. Physical Review D, 2016, 94, .	4.7	26
45	TIMING OF FIVE PALFA-DISCOVERED MILLISECOND PULSARS. Astrophysical Journal, 2016, 833, 192.	4.5	17
46	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
47	ARECIBO PULSAR SURVEY USING ALFA. IV. MOCK SPECTROMETER DATA ANALYSIS, SURVEY SENSITIVITY, AND THE DISCOVERY OF 40 PULSARS. Astrophysical Journal, 2015, 812, 81.	4.5	77
48	PSR J1906+0722: AN ELUSIVE GAMMA-RAY PULSAR. Astrophysical Journal Letters, 2015, 809, L2.	8.3	18
49	TIMING OF FIVE MILLISECOND PULSARS DISCOVERED IN THE PALFA SURVEY. Astrophysical Journal, 2015, 800, 123.	4.5	40
50	<i>Einstein@Home</i> DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT. Astrophysical Journal, 2015, 806, 140.	4.5	25
51	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
52	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
53	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
54	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68

#	Article	IF	Citations
55	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
56	Timing of a young mildly recycled pulsar with a massive white dwarf companion. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1485-1494.	4.4	23
57	ARECIBO PULSAR SURVEY USING ALFA. III. PRECURSOR SURVEY AND POPULATION SYNTHESIS. Astrophysical Journal, 2014, 787, 137.	4.5	16
58	SEARCHING FOR PULSARS USING IMAGE PATTERN RECOGNITION. Astrophysical Journal, 2014, 781, 117.	4.5	99
59	FAST RADIO BURST DISCOVERED IN THE ARECIBO PULSAR ALFA SURVEY. Astrophysical Journal, 2014, 790, 101.	4.5	409
60	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
61	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
62	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
63	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
64	EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN <i>FERMI</i> LAT DATA. Astrophysical Journal Letters, 2013, 779, L11.	8.3	34
65	TIMING AND INTERSTELLAR SCATTERING OF 35 DISTANT PULSARS DISCOVERED IN THE PALFA SURVEY. Astrophysical Journal, 2013, 772, 50.	4.5	28
66	<i>EINSTEIN@HOME</i> DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY. Astrophysical Journal, 2013, 774, 93.	4.5	45
67	X-RAY OBSERVATIONS OF DISRUPTED RECYCLED PULSARS: NO REFUGE FOR ORPHANED CENTRAL COMPACT OBJECTS. Astrophysical Journal, 2013, 773, 141.	4.5	16
68	THE <i>EINSTEIN@HOME</i> SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY. Astrophysical Journal, 2013, 773, 91.	4.5	53
69	peace: pulsar evaluation algorithm for candidate extraction – a software package for post-analysis processing of pulsar survey candidates. Monthly Notices of the Royal Astronomical Society, 2013, 433, 688-694.	4.4	48
70	Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations. Science, 2012, 338, 1314-1317.	12.6	92
71	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
72	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73

#	Article	IF	CITATIONS
73	Continuous gravitational waves from isolated Galactic neutron stars in the advanced detector era. Physical Review D, 2012, 86, .	4.7	13
74	FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries. Physical Review D, 2012, 85, .	4.7	391
75	PSR J1838–0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR. Astrophysical Journal Letters, 2012, 755, L20.	8.3	39
76	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
77	FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY. Astrophysical Journal, 2012, 757, 90.	4.5	18
78	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
79	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
80	TWO MILLISECOND PULSARS DISCOVERED BY THE PALFA SURVEY AND A SHAPIRO DELAY MEASUREMENT. Astrophysical Journal, 2012, 757, 89.	4.5	29
81	ARECIBO PALFA SURVEY AND EINSTEIN@HOME: BINARY PULSAR DISCOVERY BY VOLUNTEER COMPUTING. Astrophysical Journal Letters, 2011, 732, L1.	8.3	25
82	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
83	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
84	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
85	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
86	Double Neutron Star Binaries: A "Foreground―Source for the Gravitational-Wave Stochastic Background. Progress of Theoretical Physics Supplement, 2011, 190, 316-321.	0.1	1
87	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
88	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
89	Pulsar Discovery by Global Volunteer Computing. Science, 2010, 329, 1305-1305.	12.6	57
90	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155

#	Article	IF	CITATIONS
91	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
92	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
93	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
94	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
95	Exploiting Large-Scale Correlations to Detect Continuous Gravitational Waves. Physical Review Letters, 2009, 103, 181102.	7.8	61
96	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
97	Stochastic template placement algorithm for gravitational wave data analysis. Physical Review D, 2009, 80, .	4.7	114
98	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
99	Blandford's argument: The strongest continuous gravitational wave signal. Physical Review D, 2008, 78, .	4.7	43
100	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
101	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
102	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
103	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
104	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
105	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
106	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
107	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
108	Designing a Runtime System for Volunteer Computing. , 2006, , .		39

#	Article	IF	CITATIONS
109	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214.	4.0	133
110	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78.	4.0	123
111	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
112	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198.	4.0	27
113	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
114	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
115	χ2time-frequency discriminator for gravitational wave detection. Physical Review D, 2005, 71, .	4.7	259
116	Making h (t) for LIGO. Classical and Quantum Gravity, 2004, 21, S1723-S1735.	4.0	17
117	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
118	Commissioning, characterization and operation of the dual-recycled GEO 600. Classical and Quantum Gravity, 2004, 21, S1737-S1745.	4.0	15
119	Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses. Physical Review D, 2003, 67, .	4.7	26
120	Towards the first search for a stochastic background in LIGO data: applications of signal simulations. Classical and Quantum Gravity, 2003, 20, S677-S687.	4.0	8
121	Optimal strategies for sinusoidal signal detection. Physical Review D, 2002, 66, .	4.7	18
122	Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses. Physical Review D, 2002, 65, .	4.7	26
123	COSMIC STRINGS, LOOPS, AND LINEAR GROWTH OF MATTER PERTURBATIONS. International Journal of Modern Physics D, 2002, 11, 61-102.	2.1	24
124	Waveforms for gravitational radiation from cosmic string loops. Physical Review D, 2001, 63, .	4.7	12
125	A Virtual Data Grid for LIGO. Lecture Notes in Computer Science, 2001, , 3-12.	1.3	4
126	Multi-taper Spectral Analysis in Gravitational Wave Data Analysis. General Relativity and Gravitation, 2000, 32, 385-398.	2.0	7

#	Article	IF	CITATIONS
127	Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy. Physical Review Letters, 1999, 83, 1498-1501.	7.8	57
128	Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D, 1999, 59, .	4.7	511
129	Is the squeezing of relic gravitational waves produced by inflation detectable?. Physical Review D, 1999, 61, .	4.7	38
130	Cosmic-String–Seeded Structure Formation. Physical Review Letters, 1998, 81, 2008-2011.	7.8	43
131	Detecting relic gravitational radiation from string cosmology with LIGO. Physical Review D, 1997, 55, 3260-3264.	4.7	32
132	Cosmic Microwave Background Anisotropy Induced by Cosmic Strings on Angular Scales≳15′. Physical Review Letters, 1997, 79, 2624-2627.	7.8	105
133	Detection of anisotropies in the gravitational-wave stochastic background. Physical Review D, 1997, 56, 545-563.	4.7	117
134	Long-range effects of cosmic string structure. Physical Review D, 1996, 53, 6829-6841.	4.7	41
135	Large Angular Scale Anisotropy in Cosmic Microwave Background Induced by Cosmic Strings. Physical Review Letters, 1996, 77, 3061-3065.	7.8	49
136	CBR temperature fluctuations induced by gravitational waves in a spatially closed inflationary universe. Physical Review D, 1995, 51, 1553-1562.	4.7	11
137	CBR anisotropy from inflation-induced gravitational waves in mixed radiation and dust cosmology. Physical Review D, 1995, 52, 1902-1919.	4.7	7
138	Maximally symmetric spin-two bitensors on S3 and H3. Physical Review D, 1995, 51, 5491-5497.	4.7	10
139	Gravitational radiation from realistic cosmic string loops. Physical Review D, 1995, 52, 4337-4348.	4.7	21
140	Closed-form expression for the momentum radiated from cosmic string loops. Physical Review D, 1995, 51, 1546-1552.	4.7	10
141	Closed-form expression for the gravitational radiation rate from cosmic strings. Physical Review D, 1994, 50, 2496-2518.	4.7	27
142	Analytic results for the gravitational radiation from a class of cosmic string loops. Physical Review D, 1994, 50, 3703-3712.	4.7	21
143	CBR anisotropy from primordial gravitational waves in inflationary cosmologies. Physical Review D, 1994, 50, 3713-3737.	4.7	46
144	Are cosmic strings consistent with COBE data?. New Astronomy Reviews, 1993, 37, 433-438.	0.3	2

#	Article	IF	Citations
145	Gravitational radiation from cosmic strings. Physical Review D, 1992, 45, 1898-1912.	4.7	71
146	Examples of the Vilkovisky-Dewitt effective action in one-loop quantum gravity. Physical Review D, 1992, 45, 4504-4513.	4.7	0
147	Cosmological constraints on cosmic-string gravitational radiation. Physical Review D, 1992, 45, 3447-3468.	4.7	180
148	Photon and graviton Green's functions on cosmic string space-times. Physical Review D, 1992, 45, 4486-4503.	4.7	32
149	Gauge independence in Hadamard renormalization. Physical Review D, 1992, 46, 861-864.	4.7	5
150	Time travel on a string. Nature, 1992, 357, 19-21.	27.8	8
151	Kinky structure on strings. Physical Review D, 1991, 43, R2457-R2460.	4.7	17
152	Small-scale structure on a cosmic-string network. Physical Review D, 1991, 43, 3173-3187.	4.7	19
153	Reversing centrifugal forces. Nature, 1990, 347, 615-616.	27.8	16
154	Using gravitational lenses to detect gravitational waves. General Relativity and Gravitation, 1990, 22, 1447-1455.	2.0	7
155	Generation of structure on a cosmic-string network. Physical Review Letters, 1990, 65, 1705-1708.	7.8	25
156	Effects of curvature couplings for quantum fields on cosmic-string space-times. Physical Review D, 1990, 42, 2669-2677.	4.7	61
157	Cosmic-string evolution: A numerical simulation. Physical Review Letters, 1990, 64, 119-122.	7.8	405
158	Gravitational lenses as long-baseline gravitational-wave detectors. Physical Review Letters, 1989, 63, 2017-2020.	7.8	13
159	Stochastic gravity-wave background in inflationary-universe models. Physical Review D, 1988, 37, 2078-2085.	4.7	262
160	Massless scalar and antisymmetric tensor fields in de Sitter space. Physical Review D, 1988, 37, 2872-2877.	4.7	12
161	Renormalized graviton stress-energy tensor in curved vacuum space-times. Physical Review D, 1988, 38, 1069-1082.	4.7	18
162	Massless minimally coupled scalar field in de Sitter space. Physical Review D, 1987, 35, 3771-3778.	4.7	269

#	Article	IF	CITATIONS
163	The graviton propagator in homogeneous and isotropic spacetimes. Nuclear Physics B, 1987, 287, 743-756.	2.5	61
164	An evaluation of the graviton propagator in de sitter space. Nuclear Physics B, 1987, 292, 813-852.	2.5	134
165	Gravitons in de sitter space. Lecture Notes in Physics, 1987, , 82-96.	0.7	1
166	Vector two-point functions in maximally symmetric spaces. Communications in Mathematical Physics, 1986, 103, 669-692.	2.2	289
167	Spinor two-point functions in maximally symmetric spaces. Communications in Mathematical Physics, 1986, 106, 201-210.	2.2	54
168	Does statistical mechanics equal one-loop quantum field theory?. Physical Review D, 1986, 33, 3640-3644.	4.7	29
169	Graviton propagator in de Sitter space. Physical Review D, 1986, 34, 3670-3675.	4.7	57
170	The SU(5) potential in desitter space. Annals of Physics, 1985, 161, 152-177.	2.8	31
171	Vacuum states in de Sitter space. Physical Review D, 1985, 32, 3136-3149.	4.7	587
172	Euclidean Schwarzschild negative mode. Physical Review D, 1984, 30, 1153-1157.	4.7	33