Xiaohu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9232613/publications.pdf

Version: 2024-02-01

77	1,331	22	32
papers	citations	h-index	g-index
78	78	78	354
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Frontiers of Physics, 2022, 17 , 1 .	5.0	19
2	Super-planckian thermal radiation in borophene sheets. International Journal of Heat and Mass Transfer, 2022, 183, 122140.	4.8	26
3	Tunable nonreciprocal thermal emitter based on metal grating and graphene. International Journal of Thermal Sciences, 2022, 172, 107316.	4.9	43
4	Strong chirality in twisted bilayer α-MoO ₃ . Chinese Physics B, 2022, 31, 044101.	1.4	26
5	Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers. International Journal of Thermal Sciences, 2022, 175, 107457.	4.9	43
6	Frequency-tunable wide-angle polarization selection with a graphene-based anisotropic epsilon-near-zero metamaterial. Journal of Optics (United Kingdom), 2022, 24, 024004.	2.2	4
7	Rotation-induced significant modulation of near-field radiative heat transfer between hyperbolic nanoparticles. International Journal of Heat and Mass Transfer, 2022, 189, 122666.	4.8	28
8	Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism. Applied Optics, 2022, 61, 3363.	1.8	9
9	Tunable multichannel terahertz perfect graphene absorber with Fibonacci quasiperiodic photonic crystal. Advanced Composites and Hybrid Materials, 2022, 5, 2399-2405.	21.1	9
10	Near-field radiative heat transfer in hyperbolic materials. International Journal of Extreme Manufacturing, 2022, 4, 032002.	12.7	17
11	Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector. Renewable Energy, 2022, 189, 402-411.	8.9	29
12	The giant enhancement of nonreciprocal radiation in Thue-morse aperiodic structures. Optics and Laser Technology, 2022, 152, 108138.	4.6	36
13	Broadband and wide-angle solar absorber for the visible and near-infrared frequencies. Solar Energy, 2022, 238, 78-83.	6.1	27
14	Perfect metamaterial absorber for solar energy utilization. International Journal of Thermal Sciences, 2022, 179, 107638.	4.9	35
15	A new approach for accurately measuring the spectral emissivity via modulating the surrounding radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 288, 108277.	2.3	1
16	Near-infrared chirality of plasmonic metasurfaces with gold rectangular holes. Advanced Composites and Hybrid Materials, 2022, 5, 2527-2535.	21.1	11
17	Actively tunable hybrid plasmon-phonon polariton modes in ferroelectric/graphene heterostructure systems at low-THz frequencies. Optical Materials, 2022, 131, 112623.	3.6	3
18	Giant enhancement of the transverse magneto-optical Kerr effect based on the Tamm plasmon polaritons and its application in sensing. Optics and Laser Technology, 2022, 154, 108353.	4.6	11

#	Article	IF	CITATIONS
19	Strong nonreciprocal thermal radiation in Weyl semimetal-dielectric multilayer structure. International Journal of Thermal Sciences, 2022, 181, 107788.	4.9	18
20	Tunable Transmission Realized with Phase Change Materials. Plasmonics, 2021, 16, 71-76.	3.4	0
21	Broadband tunable absorption based on phase change materials. Results in Physics, 2021, 20, 103704.	4.1	12
22	Near-field radiative heat transfer between uniaxial hyperbolic media: Role of volume and surface phonon polaritons. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 258, 107337.	2.3	33
23	Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology. Nanoscale and Microscale Thermophysical Engineering, 2021, 25, 64-71.	2.6	18
24	Near-Field Radiative Heat Transfer via Coupling Graphene Plasmons with Different Phonon Polaritons in the Reststrahlen Bands. Engineered Science, 2021 , , .	2.3	8
25	Strong Nonreciprocal Radiation in a InAs Film by Critical Coupling with a Dielectric Grating. ES Energy & Environments, 2021, , .	1.1	10
26	Frequency-tunable terahertz angular selectivity based on a dielectric-graphene multilayer structure. Applied Optics, 2021, 60, 2811.	1.8	7
27	Observation of high contrast ratio asymmetric transmission for linearly and circularly polarized waves. Journal of Physics Communications, 2021, 5, 035011.	1.2	0
28	Radiative modulator based on Moiré hybridization with elliptic plasmons. Applied Physics Letters, 2021, 118, 173103.	3.3	10
29	Near-field radiative modulator based on dissimilar hyperbolic materials with in-plane anisotropy. International Journal of Heat and Mass Transfer, 2021, 168, 120908.	4.8	38
30	Polariton topological transition effects on radiative heat transfer. Physical Review B, 2021, 103, .	3.2	16
31	Optical topological transition and refraction control in crystal quartz by tilting the optical axis. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1452.	2.1	6
32	Strong extrinsic chirality in biaxial hyperbolic material \hat{l}_{\pm} -MoO ₃ with in-plane anisotropy. Applied Optics, 2021, 60, 4599.	1.8	22
33	Radiative Thermal Switch Exploiting Hyperbolic Surface Phonon Polaritons. Physical Review Applied, 2021, 15, .	3.8	27
34	Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Optics Express, 2021, 29, 23976.	3.4	75
35	Enhanced nonreciprocal radiation in Weyl semimetals by attenuated total reflection. AIP Advances, 2021, 11, .	1.3	45
36	Strong circular dichroism triggered by near-field perturbation. Optical Materials, 2021, 118, 111255.	3.6	8

#	Article	IF	Citations
37	Strong nonreciprocal radiation in magnetophotonic crystals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107794.	2.3	38
38	Strong dual-band nonreciprocal radiation based on a four-part periodic metal grating. Optical Materials, 2021, 120, 111476.	3.6	38
39	Amplification and modulation effect of elliptical surface polaritons on a thermal diode. International Journal of Heat and Mass Transfer, 2021, 180, 121794.	4.8	15
40	Optimization Design of a Multilayer Structure for Broadband and Direction-Selective Emissivity. ES Energy & Environments, 2021, , .	1.1	3
41	Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption. Nanomaterials, 2021, 11, 2722.	4.1	15
42	Surface and volume phonon polaritons in a uniaxial hyperbolic material: optic axis parallel versus perpendicular to the surface. Optics Express, 2021, 29, 39824.	3.4	10
43	Calculation Method for Slab and Grating Structure Made of Anisotropic Materials. Springer Theses, 2021, , 15-28.	0.1	0
44	Unidirectional Transmission of Light. Springer Theses, 2021, , 29-45.	0.1	0
45	Broadband Perfect Absorption. Springer Theses, 2021, , 47-73.	0.1	0
46	Near-complete violation of Kirchhoff's law of thermal radiation in ultrathin magnetic Weyl semimetal films. Optical Materials Express, 2021, 11, 4058.	3.0	33
47	The application of asymmetric transmission in daytime radiative cooling cannot increase the cooling power. Solar Energy Materials and Solar Cells, 2020, 215, 110662.	6.2	5
48	Validity of Kirchhoff's law for semitransparent films made of anisotropic materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106904.	2.3	66
49	Near-Field Radiative Heat Transfer Between Two α-MoO3 Biaxial Crystals. Journal of Heat Transfer, 2020, 142, .	2.1	68
50	Terahertz composite plasmonic slabs based on double-layer metallic gratings. Optics Express, 2020, 28, 18212.	3.4	7
51	The Promising Structure to Verify the Kirchhoff's Law for Nonreciprocal Materials. ES Energy & Environments, 2020, , .	1.1	9
52	Chiral Absorbers Based on Polarization Conversion and Excitation of Magnetic Polaritons. ES Energy & Environments, 2020, , .	1.1	13
53	Near-field Radiative Heat Transfer between Graphene Covered Biaxial Hyperbolic Materials. ES Energy & Environments, 2020, , .	1.1	13
54	Thermal switch with multiple discrete levels. ES Energy & Environments, 2020, , .	1.1	0

#	Article	IF	Citations
55	Chiral response of a twisted bilayer of hexagonal boron nitride. Optics Communications, 2019, 452, 124-129.	2.1	20
56	Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials. International Journal of Heat and Mass Transfer, 2019, 135, 1207-1217.	4.8	29
57	Angular Optical Transparency Induced by Photonic Topological Transition in Hexagonal Boron Nitride. Plasmonics, 2019, 14, 973-977.	3.4	4
58	Emergent asymmetries and enhancement in the absorption of natural hyperbolic crystals. Optica, 2019, 6, 1478.	9.3	28
59	KIRCHHOFF'S LAW FOR ANISOTROPIC MEDIA INCLUDING THIN FILMS., 2019,,.		0
60	Goos–Hanchen shifts in tilted uniaxial crystals. Optics Communications, 2018, 416, 181-184.	2.1	15
61	The singularities in the 4 × 4 matrix formalisms. Optik, 2018, 168, 10-12.	2.9	3
62	Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 209, 150-155.	2.3	21
63	Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 114-123.	2.6	21
64	Investigation on the Optical Transition of Hexagonal Boron Nitride. Plasmonics, 2018, 13, 1695-1698.	3.4	3
65	Perfect absorption in cascaded asymmetric hyperbolic metamaterial slabs. Superlattices and Microstructures, 2018, 124, 10-16.	3.1	5
66	High extinction ratio hexagonal boron nitride polarizer. Optik, 2018, 175, 290-295.	2.9	4
67	Theoretical investigation of the effect of hexagonal boron nitride on perfect absorption in infrared regime. Optics Communications, 2018, 425, 172-175.	2.1	17
68	Calculation of the Spectral Hemispherical Emissivity of an Arbitrarily Orientated Uniaxial Crystal. , 2018, , .		0
69	Realizing optical transparency in a continuous metal film coated with double microcavities. Optik, 2018, 172, 1100-1103.	2.9	O
70	Broadband and high-contrast-ratio optical diodes based on polarization conversion and photonic bandgap. Journal of Optics (United Kingdom), 2018, 20, 075603.	2.2	5
71	Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures. Journal of Photonics for Energy, 2018, 9, 1.	1.3	44
72	RADIATIVE COOLING BY USING A SLAB OF HEXAGONAL BORON NITRIDE. , 2018, , .		3

Хіаони Wu

#	Article	IF	CITATION
73	Broadband high contrast ratio optical diodes based on polarization conversion. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	3
74	Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons. AIP Advances, $2017, 7, .$	1.3	17
75	Eigenvalues analysis for EM waves in anisotropic materials and its applications for unidirectional transmission and unidirectional invisibility. Optics Communications, 2017, 402, 507-510.	2.1	8
76	A Time Varying Ventilation and Dust Control Strategy Based on the Temporospatial Characteristics of Dust Dispersion. Minerals (Basel, Switzerland), 2017, 7, 59.	2.0	15
77	Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum. Beilstein Journal of Nanotechnology, 0, 13, 675-681.	2.8	3