Hui Yao Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9232602/publications.pdf

Version: 2024-02-01

374 papers 33,773 citations

94 h-index 168 g-index

378 all docs 378 docs citations

378 times ranked 30203 citing authors

#	Article	IF	CITATIONS
1	TGF-Î ² : the master regulator of fibrosis. Nature Reviews Nephrology, 2016, 12, 325-338.	9.6	2,269
2	Elevated Uric Acid Increases Blood Pressure in the Rat by a Novel Crystal-Independent Mechanism. Hypertension, 2001, 38, 1101-1106.	2.7	1,092
3	Uric Acid Stimulates Monocyte Chemoattractant Protein-1 Production in Vascular Smooth Muscle Cells Via Mitogen-Activated Protein Kinase and Cyclooxygenase-2. Hypertension, 2003, 41, 1287-1293.	2.7	695
4	Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. American Journal of Physiology - Renal Physiology, 2002, 282, F991-F997.	2.7	682
5	Macrophages: versatile players in renal inflammation and fibrosis. Nature Reviews Nephrology, 2019, 15, 144-158.	9.6	551
6	TGF-β/Smad signaling in renal fibrosis. Frontiers in Physiology, 2015, 6, 82.	2.8	541
7	Diverse Roles of TGF- \hat{l}^2 /Smads in Renal Fibrosis and Inflammation. International Journal of Biological Sciences, 2011, 7, 1056-1067.	6.4	532
8	Inflammatory processes in renal fibrosis. Nature Reviews Nephrology, 2014, 10, 493-503.	9.6	531
9	TGF-Î ² /Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29. Journal of the American Society of Nephrology: JASN, 2011, 22, 1462-1474.	6.1	511
10	Renal tubule injury: a driving force toward chronic kidney disease. Kidney International, 2018, 93, 568-579.	5.2	504
11	A Subpopulation of CD26+ Cancer Stem Cells with Metastatic Capacity in Human Colorectal Cancer. Cell Stem Cell, 2010, 6, 603-615.	11.1	481
12	Uric Acid, Hominoid Evolution, and the Pathogenesis of Salt-Sensitivity. Hypertension, 2002, 40, 355-360.	2.7	478
13	Transforming growth factor- \hat{l}^2 regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney International, 1999, 56, 1455-1467.	5.2	454
14	Smad3-Mediated Upregulation of miR-21 Promotes Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1668-1681.	6.1	364
15	Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney International, 1998, 54, 864-876.	5.2	349
16	A novel, simple, reliable, and sensitive method for multiple immunoenzyme staining: use of microwave oven heating to block antibody crossreactivity and retrieve antigens Journal of Histochemistry and Cytochemistry, 1995, 43, 97-102.	2.5	344
17	miR-192 Mediates TGF- \hat{l}^2 /Smad3-Driven Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1317-1325.	6.1	340
18	Inhibition of Renal Fibrosis by Gene Transfer of Inducible Smad7 Using Ultrasound-Microbubble System in Rat UUO Model. Journal of the American Society of Nephrology: JASN, 2003, 14, 1535-1548.	6.1	334

#	Article	IF	CITATIONS
19	miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia, 2013, 56, 663-674.	6.3	315
20	Transforming growth factorâ€Î² and Smad signalling in kidney diseases. Nephrology, 2005, 10, 48-56.	1.6	314
21	Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clinical Science, 2013, 124, 243-254.	4.3	311
22	Smad2 Protects against TGF- \hat{l}^2 /Smad3-Mediated Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1477-1487.	6.1	293
23	The Pathogenic Role of Macrophage Migration Inhibitory Factor in Immunologically Induced Kidney Disease in the Rat. Journal of Experimental Medicine, 1997, 185, 1455-1466.	8.5	262
24	Diabetes Complications: The MicroRNA Perspective. Diabetes, 2011, 60, 1832-1837.	0.6	258
25	miR-29b as a Therapeutic Agent for Angiotensin II-induced Cardiac Fibrosis by Targeting TGF-β/Smad3 signaling. Molecular Therapy, 2014, 22, 974-985.	8.2	257
26	miR-29 Inhibits Bleomycin-induced Pulmonary Fibrosis in Mice. Molecular Therapy, 2012, 20, 1251-1260.	8.2	253
27	Macrophage-to-Myofibroblast Transition Contributes to Interstitial Fibrosis in Chronic Renal Allograft Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 2053-2067.	6.1	250
28	Angiotensin II Up-Regulates Angiotensin I-Converting Enzyme (ACE), but Down-Regulates ACE2 via the AT1-ERK/p38 MAP Kinase Pathway. American Journal of Pathology, 2008, 172, 1174-1183.	3.8	247
29	Advanced glycation end products activate Smad signaling via TGFâ€Î²â€dependent and â€independent mechanisms: implications for diabetic renal and vascular disease. FASEB Journal, 2004, 18, 176-178.	0.5	241
30	Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. Journal of Clinical Investigation, 1999, 103, 73-80.	8.2	238
31	Chemokines in Renal Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 802-809.	6.1	234
32	Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death and Differentiation, 2020, 27, 210-226.	11.2	232
33	Smad7 Inhibits Fibrotic Effect of TGF-β on Renal Tubular Epithelial Cells by Blocking Smad2 Activation. Journal of the American Society of Nephrology: JASN, 2002, 13, 1464-1472.	6.1	231
34	Signaling Mechanism of TGF- \hat{l}^21 in Prevention of Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2005, 16, 1371-1383.	6.1	230
35	Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Current Opinion in Nephrology and Hypertension, 2003, 12, 25-29.	2.0	229
36	Angiotensin II Induces Connective Tissue Growth Factor and Collagen I Expression via Transforming Growth Factor–β–Dependent and –Independent Smad Pathways. Hypertension, 2009, 54, 877-884.	2.7	226

#	Article	IF	CITATIONS
37	Chymase Is Upregulated in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, 1738-1747.	6.1	219
38	Essential Role of Smad3 in Angiotensin Il–Induced Vascular Fibrosis. Circulation Research, 2006, 98, 1032-1039.	4.5	219
39	Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death and Disease, 2016, 7, e2495-e2495.	6.3	215
40	TGF-Î ² /Smad Signaling in Kidney Disease. Seminars in Nephrology, 2012, 32, 236-243.	1.6	203
41	Advanced Glycation End Products Induce Tubular Epithelial-Myofibroblast Transition through the RAGE-ERK1/2 MAP Kinase Signaling Pathway. American Journal of Pathology, 2004, 164, 1389-1397.	3.8	202
42	The Protective Role of Smad7 in Diabetic Kidney Disease: Mechanism and Therapeutic Potential. Diabetes, 2011, 60, 590-601.	0.6	202
43	Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney International Supplements, 2014, 4, 34-38.	14.2	177
44	TGF- \hat{l}^2 /Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget, 2016, 7, 8809-8822.	1.8	172
45	Advanced Glycation End-Products Induce Tubular CTGF via TGF-β–Independent Smad3 Signaling. Journal of the American Society of Nephrology: JASN, 2010, 21, 249-260.	6.1	168
46	Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression. PLoS ONE, 2011, 6, e21816.	2.5	168
47	microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget, 2015, 6, 7325-7338.	1.8	168
48	MicroRNA-29b Inhibits Diabetic Nephropathy in db/db Mice. Molecular Therapy, 2014, 22, 842-853.	8.2	167
49	Expression of macrophage migration inhibitory factor in human glomerulonephritis. Kidney International, 2000, 57, 499-509.	5.2	164
50	Ultrasound-Microbubble-Mediated Gene Transfer of Inducible Smad7 Blocks Transforming Growth Factor-Î ² Signaling and Fibrosis in Rat Remnant Kidney. American Journal of Pathology, 2005, 166, 761-771.	3.8	161
51	Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrology Dialysis Transplantation, 2009, 24, 1443-1454.	0.7	160
52	The microRNA miR-433 promotes renal fibrosis by amplifying the TGF- \hat{l}^2 /Smad3-Azin1 pathway. Kidney International, 2013, 84, 1129-1144.	5.2	158
53	MIF Expression in the Rat Brain: Implications for Neuronal Function. Molecular Medicine, 1998, 4, 217-230.	4.4	155
54	Disruption of Smad4 impairs TGF- \hat{l}^2 /Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney International, 2012, 81, 266-279.	5.2	155

#	Article	IF	Citations
55	MicroRNAs in renal fibrosis. Frontiers in Physiology, 2015, 6, 50.	2.8	153
56	Novel IncRNA Erbb4-IR Promotes Diabetic Kidney Injury in <i>db/db</i> Mice by Targeting miR-29b. Diabetes, 2018, 67, 731-744.	0.6	148
57	Local macrophage proliferation in human glomerulonephritis. Kidney International, 1998, 54, 143-151.	5.2	143
58	Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney International, 1993, 43, 479-485.	5.2	140
59	Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-Î ² 1-dependent mechanism in vitro. American Journal of Kidney Diseases, 2001, 37, 820-831.	1.9	140
60	TGF- \hat{l}^2 induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways. Kidney International, 2004, 66, 605-613.	5.2	140
61	Role of TGF- \hat{i}^2 signaling in extracellular matrix production under high glucose conditions. Kidney International, 2003, 63, 2010-2019.	5.2	138
62	Transforming growth factor $\hat{\mathbb{P}}^2/\langle scp \rangle S \langle scp \rangle$ mad signalling in diabetic nephropathy. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 731-738.	1.9	138
63	Identification of Novel Long Noncoding RNAs Associated with TGF- \hat{l}^2 /Smad3-Mediated Renal Inflammation and Fibrosis by RNA Sequencing. American Journal of Pathology, 2014, 184, 409-417.	3.8	137
64	Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nature Communications, 2017, 8, 14677.	12.8	137
65	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.6	136
66	Diverse Role of TGF- \hat{l}^2 in Kidney Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 123.	3.7	136
67	Smad3 Mediates Cardiac Inflammation and Fibrosis in Angiotensin II–Induced Hypertensive Cardiac Remodeling. Hypertension, 2010, 55, 1165-1171.	2.7	129
68	Initiation and evolution of interstitial leukocytic infiltration in experimental glomerulonephritis. Kidney International, 1991, 40, 425-433.	5.2	128
69	Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. American Journal of Kidney Diseases, 2001, 38, 761-769.	1.9	128
70	A Small-Molecule Macrophage Migration Inhibitory Factor Antagonist Protects against Glomerulonephritis in Lupus-Prone NZB/NZW F1 and MRL/ <i>lpr</i> Nice. Journal of Immunology, 2011, 186, 527-538.	0.8	128
71	Diverse roles of TGF $\hat{\mathbb{H}}^2$ receptor II in renal fibrosis and inflammation <i>in vivo</i> and <i>in vitro</i> Journal of Pathology, 2012, 227, 175-188.	4.5	128
72	Activation of p53 Promotes Renal Injury in Acute Aristolochic Acid Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 31-41.	6.1	126

#	Article	IF	CITATIONS
73	Smad7 suppresses renal fibrosis via altering expression of TGF- \hat{l}^2 /Smad3-regulated microRNAs. Molecular Therapy, 2013, 21, 388-398.	8.2	126
74	Leukocyte Populations of the Adult Rat Testis Following Removal of the Leydig Cells by Treatment With Ethane Dimethane Sulfonate and Subcutaneous Testosterone Implants1. Biology of Reproduction, 1994, 51, 551-561.	2.7	125
75	Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics, 2021, 11, 5248-5266.	10.0	122
76	De Novo Expression of Macrophage Migration Inhibitory Factor in Atherogenesis in Rabbits. Circulation Research, 2000, 87, 1202-1208.	4.5	121
77	Long Noncoding RNA Arid2-IR Is a Novel Therapeutic Target for Renal Inflammation. Molecular Therapy, 2015, 23, 1034-1043.	8.2	121
78	Mechanism of chronic aristolochic acid nephropathy: role of Smad3. American Journal of Physiology - Renal Physiology, 2010, 298, F1006-F1017.	2.7	120
79	Latent TGF-Î ² 1 Protects Against Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 233-242.	6.1	118
80	Role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Journal of Pathology, 2003, 199, 496-508.	4.5	116
81	Smad7 Gene Therapy Ameliorates an Autoimmune Crescentic Glomerulonephritis in Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 1777-1788.	6.1	116
82	The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney International, 2017, 91, 587-602.	5.2	116
83	TGF- \hat{l}^2 Mediates Renal Fibrosis via the Smad3-Erbb4-IR Long Noncoding RNA Axis. Molecular Therapy, 2018, 26, 148-161.	8.2	116
84	Critical Role of Macrophage Migration Inhibitory Factor Activity in Experimental Autoimmune Diabetes. Endocrinology, 2005, 146, 2942-2951.	2.8	115
85	HYPERURICEMIA EXACERBATES CHRONIC CYCLOSPORINE NEPHROPATHY1. Transplantation, 2001, 71, 900-905.	1.0	112
86	Loss of miR-29 in Myoblasts Contributes to Dystrophic Muscle Pathogenesis. Molecular Therapy, 2012, 20, 1222-1233.	8.2	111
87	Application of microRNAs in diabetes mellitus. Journal of Endocrinology, 2014, 222, R1-R10.	2.6	107
88	Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia, 2012, 55, 509-519.	6.3	105
89	Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney International, 2019, 95, 178-187.	5.2	105
90	Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney International, 1995, 48, 753-760.	5.2	103

#	Article	IF	Citations
91	Loss of angiotensin-converting enzyme 2 enhances TGF- \hat{i}^2 /Smad-mediated renal fibrosis and NF- \hat{i}^2 B-driven renal inflammation in a mouse model of obstructive nephropathy. Laboratory Investigation, 2012, 92, 650-661.	3.7	101
92	In Vivo Administration of a Nuclear Transcription Factor-κB Decoy Suppresses Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2000, 11, 1244-1252.	6.1	101
93	Smad7 as a therapeutic agent for chronic kidney diseases. Frontiers in Bioscience - Landmark, 2008, Volume, 4984.	3.0	100
94	C-Reactive Protein Promotes Cardiac Fibrosis and Inflammation in Angiotensin Il–Induced Hypertensive Cardiac Disease. Hypertension, 2010, 55, 953-960.	2.7	98
95	Transforming Growth Factor-β and Smads. Contributions To Nephrology, 2011, 170, 75-82.	1.1	98
96	CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene, 2013, 32, 2282-2291.	5.9	97
97	Glomerular epithelial–myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrology Dialysis Transplantation, 1999, 14, 2860-2872.	0.7	96
98	The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney International, 2018, 93, 173-187.	5.2	94
99	Asiatic Acid Inhibits Liver Fibrosis by Blocking TGF-beta/Smad Signaling In Vivo and In Vitro. PLoS ONE, 2012, 7, e31350.	2.5	94
100	Blockade of NFκB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney International, 2005, 67, S83-S91.	5.2	93
101	A simple, reliable, and sensitive method for nonradioactive in situ hybridization: use of microwave heating to improve hybridization efficiency and preserve tissue morphology Journal of Histochemistry and Cytochemistry, 1996, 44, 281-287.	2.5	92
102	Essential role for Smad3 in angiotensin IIâ€induced tubular epithelial–mesenchymal transition. Journal of Pathology, 2010, 221, 390-401.	4.5	91
103	miR-30a Negatively Regulates TGF-β1–Induced Epithelial-Mesenchymal Transition and Peritoneal Fibrosis by Targeting Snai1. American Journal of Pathology, 2013, 183, 808-819.	3.8	91
104	Smad3 mediates ANG II-induced hypertensive kidney disease in mice. American Journal of Physiology - Renal Physiology, 2012, 302, F986-F997.	2.7	90
105	Macrophage Phenotype in Kidney Injury and Repair. Kidney Diseases (Basel, Switzerland), 2015, 1, 138-146.	2.5	90
106	Conditional knockout of TGF- \hat{l}^2 RII /Smad2 signals protects against acute renal injury by alleviating cell necroptosis, apoptosis and inflammation. Theranostics, 2019, 9, 8277-8293.	10.0	88
107	TGF-Î ² Signaling: From Tissue Fibrosis to Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 7575.	4.1	87
108	Treatment of renal fibrosis by rebalancing TGF- \hat{l}^2 /Smad signaling with the combination of asiatic acid and naringenin. Oncotarget, 2015, 6, 36984-36997.	1.8	86

#	Article	IF	Citations
109	Câ€reactive protein and ageing. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 9-14.	1.9	86
110	Disruption of Smad7 Promotes ANG II-Mediated Renal Inflammation and Fibrosis via Sp1-TGF-β/Smad3-NF.κB-Dependent Mechanisms in Mice. PLoS ONE, 2013, 8, e53573.	2. 5	86
111	Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney International, 1995, 47, 1303-1309.	5.2	85
112	Local macrophage and myofibroblast proliferation in progressive renal injury in the rat remnant kidney. Nephrology Dialysis Transplantation, 1998, 13, 1967-1974.	0.7	85
113	Macrophage migration inhibitory factor induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques. Atherosclerosis, 2005, 178, 207-215.	0.8	85
114	Transforming growth factorâ€Î² signalling in renal fibrosis: from Smads to nonâ€coding RNAs. Journal of Physiology, 2018, 596, 3493-3503.	2.9	85
115	MACROPHAGE MIGRATION INHIBITORY FACTOR EXPRESSION IN HUMAN RENAL ALLOGRAFT REJECTION 1,2. Transplantation, 1998, 66, 1465-1471.	1.0	85
116	TNF-α Up-regulates Renal MIF Expression in Rat Crescentic Glomerulonephritis. Molecular Medicine, 1997, 3, 136-144.	4.4	83
117	IL-1 Up-Regulates Osteopontin Expression in Experimental Crescentic Glomerulonephritis in the Rat. American Journal of Pathology, 1999, 154, 833-841.	3.8	83
118	CXCL9, but not CXCL10, Promotes CXCR3-Dependent Immune-Mediated Kidney Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 1177-1189.	6.1	83
119	Mice overexpressing latent TGF- \hat{l}^21 are protected against renal fibrosis in obstructive kidney disease. American Journal of Physiology - Renal Physiology, 2008, 295, F118-F127.	2.7	83
120	Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. European Journal of Nutrition, 2010, 49, 1-9.	3.9	83
121	Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine, 2019, 52, 284-294.	5. 3	82
122	Osteopontin expression in progressive renal injury in remnant kidney: Role of angiotensin II. Kidney International, 2000, 58, 1469-1480.	5. 2	81
123	Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics, 2019, 9, 4324-4341.	10.0	79
124	Quercetin protects against cisplatinâ€induced acute kidney injury by inhibiting Mincle/Syk/NFâ€ĤB signaling maintained macrophage inflammation. Phytotherapy Research, 2020, 34, 139-152.	5.8	79
125	Reversal of Established Rat Crescentic Glomerulonephritis by Blockade of Macrophage Migration Inhibitory Factor (MIF): Potential Role of MIF in Regulating Glucocorticoid Production. Molecular Medicine, 1998, 4, 413-424.	4.4	78
126	Macrophage migration inhibitory factor is an important mediator in the pathogenesis of gastric inflammation in rats. Gastroenterology, 2001, 121, 619-630.	1.3	78

#	Article	IF	CITATIONS
127	Intrinsic renal cells are the major source of interleukin-1Â synthesis in normal and diseased rat kidney. Nephrology Dialysis Transplantation, 1997, 12, 1109-1115.	0.7	77
128	Advanced Glycation End Products Activate a Chymase-Dependent Angiotensin II–Generating Pathway in Diabetic Complications. Circulation, 2006, 113, 1353-1360.	1.6	77
129	Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage–myofibroblast transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20741-20752.	7.1	76
130	GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy. Cell Death and Differentiation, 2021, 28, 2333-2350.	11.2	76
131	Kallistatin protects against diabetic nephropathy inÂdb/db mice by suppressing AGE-RAGE-induced oxidative stress. Kidney International, 2016, 89, 386-398.	5.2	75
132	Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism: Clinical and Experimental, 2020, 103, 154013.	3.4	73
133	ICAM-1 directs migration and localization of interstitial leukocytes in experimental glomerulonephritis. Kidney International, 1994, 45, 32-42.	5.2	72
134	De novo glomerular osteopontin expression in rat crescentic glomerulonephritis. Kidney International, 1998, 53, 136-145.	5.2	72
135	Tubules are the major site of M-CSF production in experimental kidney disease: Correlation with local macrophage proliferation11See Editorial by Rovin, p. 797. Kidney International, 2001, 60, 614-625.	5.2	72
136	Peroxisome Proliferator-Activated Receptor- \hat{l}^3 Contributes to the Inhibitory Effects of Embelin on Colon Carcinogenesis. Cancer Research, 2009, 69, 4776-4783.	0.9	71
137	Upregulation of Angiotensin (1-7)-Mediated Signaling Preserves Endothelial Function Through Reducing Oxidative Stress in Diabetes. Antioxidants and Redox Signaling, 2015, 23, 880-892.	5.4	70
138	LRNA9884, a Novel Smad3-Dependent Long Noncoding RNA, Promotes Diabetic Kidney Injury in ⟨i⟩db⟨/i⟩/⟨i⟩db⟨/i⟩ Mice via Enhancing MCP-1–Dependent Renal Inflammation. Diabetes, 2019, 68, 1485-1498.	0.6	69
139	Local Regulation of Macrophage Subsets in the Adult Rat Testis: Examination of the Roles of the Seminiferous Tubules, Testosterone, and Macrophage-Migration Inhibitory Factor 1. Biology of Reproduction, 1998, 59, 371-378.	2.7	67
140	Role of JAK/STAT Pathway in IL-6-Induced Activation of Vascular Smooth Muscle Cells. American Journal of Nephrology, 2004, 24, 387-392.	3.1	67
141	C5a Receptor Deficiency Attenuates T Cell Function and Renal Disease in MRLlpr Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3572-3582.	6.1	66
142	Signaling Mechanism of Renal Fibrosis in Unilateral Ureteral Obstructive Kidney Disease in ROCK1 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 3105-3114.	6.1	66
143	C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes. Diabetologia, 2011, 54, 2713-2723.	6.3	65
144	RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1475-E1484.	7.1	65

#	Article	IF	CITATIONS
145	Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunology Research, 2018, 6, 965-977.	3.4	64
146	Smad7 gene transfer inhibits peritoneal fibrosis. Kidney International, 2007, 72, 1336-1344.	5.2	62
147	C-reactive protein promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive nephropathy in mice. Laboratory Investigation, 2011, 91, 837-851.	3.7	61
148	Expression of Macrophage Migration Inhibitory Factor in Acute Ischemic Myocardial Injury. Journal of Histochemistry and Cytochemistry, 2003, 51, 625-631.	2.5	60
149	Role of ERK1/2 and p38 Mitogen-Activated Protein Kinases in the Regulation of Thrombospondin-1 by TGF- \hat{l}^21 in Rat Proximal Tubular Cells and Mouse Fibroblasts. Journal of the American Society of Nephrology: JASN, 2005, 16, 899-904.	6.1	60
150	Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis, 2010, 31, 1220-1229.	2.8	59
151	Transforming Growth Factor-Î ² : A Multifunctional Regulator of Cancer Immunity. Cancers, 2020, 12, 3099.	3.7	59
152	TGF-Beta as a Master Regulator of Diabetic Nephropathy. International Journal of Molecular Sciences, 2021, 22, 7881.	4.1	59
153	DEOXYSPERGUALIN SUPPRESSES LOCAL MACROPHAGE PROLIFERATION IN RAT RENAL ALLOGRAFT REJECTION. Transplantation, 1994, 58, 596-601.	1.0	58
154	Differential regulation of VEGF by TGF-β and hypoxia in rat proximal tubular cells. American Journal of Physiology - Renal Physiology, 2004, 287, F658-F664.	2.7	58
155	Bradykinin and high glucose promote renal tubular inflammation. Nephrology Dialysis Transplantation, 2010, 25, 698-710.	0.7	58
156	Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling. Cardiovascular Research, 2013, 99, 665-673.	3.8	58
157	Opposing Roles for Smad2 and Smad3 in Peritoneal Fibrosis inÂVivo and inÂVitro. American Journal of Pathology, 2014, 184, 2275-2284.	3.8	58
158	Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Scientific Reports, 2016, 6, 32087.	3.3	58
159	C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration. Clinical Science, 2014, 126, 645-659.	4.3	57
160	Combination of Asiatic Acid and Naringenin Modulates NK Cell Anti-cancer Immunity by Rebalancing Smad3/Smad7 Signaling. Molecular Therapy, 2018, 26, 2255-2266.	8.2	57
161	Mechanisms of glomerular macrophage infiltration in lipid-induced renal injury. Kidney International, 1999, 56, S47-S50.	5.2	56
162	MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. Laboratory Investigation, 2014, 94, 978-990.	3.7	56

#	Article	IF	Citations
163	Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Frontiers in Physiology, 2019, 10, 226.	2.8	56
164	The ICAM-1/LFA-1 interaction in glomerular leukocytic accumulation in anti-GBM glomerulonephritis. Kidney International, 1994, 45, 700-708.	5.2	55
165	Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease. Journal of Pharmaceutical and Biomedical Analysis, 2012, 60, 32-43.	2.8	55
166	Use of genetic mouse models in the study of diabetic nephropathy. Current Diabetes Reports, 2004, 4, 435-440.	4.2	54
167	Anti-Inflammatory and Renal Protective Actions of Stanniocalcin-1 in a Model of Anti-Glomerular Basement Membrane Glomerulonephritis. American Journal of Pathology, 2009, 174, 1368-1378.	3.8	54
168	Renoprotective effect of berberine on type 2 diabetic nephropathy in rats. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 662-670.	1.9	54
169	C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney International, 2016, 90, 610-626.	5.2	54
170	SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy. Autophagy, 2021, 17, 2325-2344.	9.1	54
171	Macrophage Migration Inhibitory Factor Induces MMP-9 Expression in Macrophages via The MEK-ERK MAP Kinase Pathway. Journal of Interferon and Cytokine Research, 2007, 27, 103-110.	1.2	52
172	Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS ONE, 2021, 16, e0245209.	2.5	52
173	Pentoxifylline suppresses renal tumour necrosis factor-Â and ameliorates experimental crescentic glomerulonephritis in rats. Nephrology Dialysis Transplantation, 2004, 19, 1106-1115.	0.7	51
174	Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. American Journal of Physiology - Renal Physiology, 2007, 292, F895-F904.	2.7	51
175	Role of Macrophage Migration Inhibition Factor in Kidney Disease. Nephron Experimental Nephrology, 2008, 109, e79-e83.	2.2	51
176	Smad3 Promotes Cancerâ€Associated Fibroblasts Generation via Macrophage–Myofibroblast Transition. Advanced Science, 2022, 9, e2101235.	11.2	51
177	Smad7 Transgene Attenuates Peritoneal Fibrosis in Uremic Rats Treated with Peritoneal Dialysis. Journal of the American Society of Nephrology: JASN, 2007, 18, 2689-2703.	6.1	49
178	Smad7 inhibits Angll-mediated hypertensive nephropathy in a mouse model of hypertension. Clinical Science, 2014, 127, 195-208.	4.3	49
179	Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Molecular Therapy, 2018, 26, 2523-2532.	8.2	49
180	Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrology Dialysis Transplantation, 2003, 18, 36-45.	0.7	48

#	Article	IF	Citations
181	C-Reactive Protein Promotes Diabetic Kidney Disease in db/db Mice via the CD32b-Smad3-mTOR signaling Pathway. Scientific Reports, 2016, 6, 26740.	3.3	48
182	SARSâ€CoVâ€2 N Protein Induces Acute Kidney Injury via Smad3â€Dependent G1 Cell Cycle Arrest Mechanism. Advanced Science, 2022, 9, e2103248.	11.2	48
183	Involvement of Macrophage Migration Inhibitory Factor (MIF) in Experimental Uric Acid Nephropathy. Molecular Medicine, 2000, 6, 837-848.	4.4	47
184	Helicobacter pyloriInfection Is Associated with Increased Expression of Macrophage Migratory Inhibitory Factor—by Epithelial Cells, T Cells, and Macrophages—in Gastric Mucosa. Journal of Infectious Diseases, 2004, 190, 293-302.	4.0	47
185	Evidence for vascular macrophage migration inhibitory factor in destabilization of human atherosclerotic plaques. Cardiovascular Research, 2005, 65, 272-282.	3.8	47
186	Chaihuang-Yishen Granule Inhibits Diabetic Kidney Disease in Rats through Blocking TGF- \hat{l}^2 /Smad3 Signaling. PLoS ONE, 2014, 9, e90807.	2.5	47
187	miRNA-29b improves bone healing in mouse fracture model. Molecular and Cellular Endocrinology, 2016, 430, 97-107.	3.2	47
188	CD44 and hyaluronan expression in the development of experimental crescentic glomerulonephritis. Clinical and Experimental Immunology, 2003, 108, 69-77.	2.6	46
189	Renal inflammation is modulated by potassium in chronic kidney disease: possible role of Smad7. American Journal of Physiology - Renal Physiology, 2007, 293, F1123-F1130.	2.7	46
190	The preventive and therapeutic implication for renal fibrosis by targetting TGF- \hat{l}^2 /Smad3 signaling. Clinical Science, 2018, 132, 1403-1415.	4.3	46
191	Transferrin but not albumin mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. American Journal of Kidney Diseases, 2001, 37, 94-103.	1.9	45
192	Transferrin up-regulates chemokine synthesis by human proximal tubular epithelial cells: Implication on mechanism of tubuloglomerular communication in glomerulopathic proteinura. Kidney International, 2002, 61, 1655-1665.	5.2	45
193	Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in Rats. PLoS ONE, 2016, 11, e0147693.	2.5	43
194	Interleukin-10 differentially modulates MHC class II expression by mesangial cells and macrophagesin vitroandin vivo. Immunology, 1998, 94, 72-78.	4.4	42
195	Deletion of Angiotensin-Converting Enzyme-2 Promotes Hypertensive Nephropathy by Targeting Smad7 for Ubiquitin Degradation. Hypertension, 2017, 70, 822-830.	2.7	42
196	The Mincle/Syk/NF-κB Signaling Circuit Is Essential for Maintaining the Protumoral Activities of Tumor-Associated Macrophages. Cancer Immunology Research, 2020, 8, 1004-1017.	3.4	42
197	The Role of Selectins in Glomerular Leukocyte Recruitment in Rat Anti-Glomerular Basement Membrane Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 1999, 10, 2510-2517.	6.1	42
198	Smad3 Signatures in Renal Inflammation and Fibrosis. International Journal of Biological Sciences, 2022, 18, 2795-2806.	6.4	42

#	Article	IF	CITATIONS
199	MicroRNAs in Diabetic Kidney Disease. International Journal of Endocrinology, 2014, 2014, 1-11.	1.5	41
200	CD44-mediated neutrophil apoptosis in the rat. Kidney International, 2000, 58, 1920-1930.	5.2	40
201	Identification of XAF1 as a novel cell cycle regulator through modulating G2/M checkpoint and interaction with checkpoint kinase 1 in gastrointestinal cancer. Carcinogenesis, 2009, 30, 1507-1516.	2.8	40
202	Macrophages in Renal Fibrosis. Advances in Experimental Medicine and Biology, 2019, 1165, 285-303.	1.6	40
203	Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biology, 2020, 18, 182.	3.8	40
204	Amelioration of Albuminuria in ROCK1 Knockout Mice with Streptozotocin-Induced Diabetic Kidney Disease. American Journal of Nephrology, 2011, 34, 468-475.	3.1	39
205	Up-regulation of macrophage colony-stimulating factor (M-CSF) and migration inhibitory factor (MIF) expression and monocyte recruitment during lipid-induced glomerular injury in the exogenous hypercholesterolaemic (ExHC) rat. Clinical and Experimental Immunology, 1997, 108, 318-323.	2.6	38
206	Elevation of plasma level of macrophage migration inhibitory factor in patients with acute myocardial infarction. American Journal of Cardiology, 2001, 88, 774-777.	1.6	38
207	Inhibitory role of Smad7 in hepatocarcinogenesis in mice and <i>in vitro</i> . Journal of Pathology, 2013, 230, 441-452.	4.5	38
208	Deficiency of Smad7 Enhances Cardiac Remodeling Induced by Angiotensin II Infusion in a Mouse Model of Hypertension. PLoS ONE, 2013, 8, e70195.	2.5	38
209	A novel method of microwave treatment for detection of cytoplasmic and nuclear antigens by flow cytometry. Journal of Immunological Methods, 1996, 190, 1-10.	1.4	37
210	Pentoxifylline Inhibits Transforming Growth Factor-Beta Signaling and Renal Fibrosis in Experimental Crescentic Glomerulonephritis in Rats. American Journal of Nephrology, 2009, 29, 43-53.	3.1	37
211	XIAPâ€associated factor 1 (XAF1), a novel target of p53, enhances p53â€mediated apoptosis via postâ€translational modification. Molecular Carcinogenesis, 2012, 51, 422-432.	2.7	37
212	Smad7 protects against acute kidney injury by rescuing tubular epithelial cells from the G1 cell cycle arrest. Clinical Science, 2017, 131, 1955-1969.	4.3	37
213	DPP4/CD32b/NF-κB Circuit: A Novel Druggable Target for Inhibiting CRP-Driven Diabetic Nephropathy. Molecular Therapy, 2021, 29, 365-375.	8.2	37
214	MicroRNA and nephropathy: emerging concepts. International Journal of Nephrology and Renovascular Disease, 2013, 6, 169.	1.8	36
215	Tissue Kallikrein Mediates Pro-Inflammatory Pathways and Activation of Protease-Activated Receptor-4 in Proximal Tubular Epithelial Cells. PLoS ONE, 2014, 9, e88894.	2.5	36
216	Expression of Human Tissue Factor Pathway Inhibitor on Vascular Smooth Muscle Cells Inhibits Secretion of Macrophage Migration Inhibitory Factor and Attenuates Atherosclerosis in ApoE â^'/â^' Mice. Circulation, 2015, 131, 1350-1360.	1.6	36

#	Article	IF	CITATIONS
217	Bone marrowâ€derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells. Journal of Pathology, 2019, 248, 488-500.	4.5	36
218	Tubule-Specific Mst1/2 Deficiency Induces CKD via YAP and Non-YAP Mechanisms. Journal of the American Society of Nephrology: JASN, 2020, 31, 946-961.	6.1	35
219	Up-regulation of macrophage migration inhibitory factor in acute renal allograft rejection in the rat. Clinical and Experimental Immunology, 1999, 118, 329-336.	2.6	34
220	Effects of cyclosporine in osteopontin null mice. Kidney International, 2002, 62, 78-85.	5.2	34
221	Deregulation of E-cadherin-catenin complex in precancerous lesions of gastric adenocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2003, 18, 534-539.	2.8	34
222	Up-regulation of macrophage migration inhibitory factor in infants with acute neonatal necrotizing enterocolitis. Histopathology, 2005, 46, 659-667.	2.9	34
223	Loss of XIAP sensitizes rosiglitazoneâ€induced growth inhibition of colon cancer <i>in vivo</i> . International Journal of Cancer, 2008, 122, 2858-2863.	5.1	34
224	The incidence, risk factors and in-hospital mortality of acute kidney injury in patients after abdominal aortic aneurysm repair surgery. BMC Nephrology, 2017, 18, 184.	1.8	34
225	TGF-Î ² in renal fibrosis: triumphs and challenges. Future Medicinal Chemistry, 2020, 12, 853-866.	2.3	33
226	Transforming Growth Factor β1 Promotes Chromosomal Instability in Human Papillomavirus 16 E6E7–Infected Cervical Epithelial Cells. Cancer Research, 2008, 68, 7200-7209.	0.9	32
227	miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Clinical Science, 2020, 134, 2223-2234.	4.3	32
228	Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor suppressor in gastric cancer. Carcinogenesis, 2008, 29, 1327-1333.	2.8	31
229	Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. Journal of Cellular and Molecular Medicine, 2019, 23, 3867-3877.	3.6	31
230	Loss of XIAP sensitizes colon cancer cells to PPARγ independent antitumor effects of troglitazone and 15-PGJ2. Cancer Letters, 2008, 268, 260-271.	7.2	30
231	Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clinical Science, 2013, 124, 627-637.	4.3	30
232	Loss of Smad7 Promotes Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 2018, 9, 2537.	4.8	30
233	The Emerging Role of Innate Immunity in Chronic Kidney Diseases. International Journal of Molecular Sciences, 2020, 21, 4018.	4.1	30
234	Effect of interleukin-10 treatment on crescentic glomerulonephritis in rats. Kidney International, 1997, 51, 1809-1817.	5.2	29

#	Article	IF	CITATIONS
235	Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis, 2010, 31, 1552-1560.	2.8	29
236	Differential effects of advanced glycation endâ€products on renal tubular cell inflammation. Nephrology, 2011, 16, 417-425.	1.6	29
237	LncRNAs in TGF-Î ² -Driven Tissue Fibrosis. Non-coding RNA, 2018, 4, 26.	2.6	29
238	Long Non-coding RNA LRNA9884 Promotes Acute Kidney Injury via Regulating NF-kB-Mediated Transcriptional Activation of MIF. Frontiers in Physiology, 2020, 11, 590027.	2.8	29
239	Renoprotection by Rosiglitazone in Accelerated Type 2 Diabetic Nephropathy: Role of STAT1 Inhibition and Nephrin Restoration. American Journal of Nephrology, 2010, 32, 145-155.	3.1	28
240	Smads as therapeutic targets for chronic kidney disease. Kidney Research and Clinical Practice, 2012, 31, 4-11.	2.2	28
241	Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Bone, 2014, 67, 46-55.	2.9	28
242	The incidence, risk factors, and long-term outcomes of acute kidney injury in hospitalized diabetic ketoacidosis patients. BMC Nephrology, 2020, 21, 48.	1.8	28
243	Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Frontiers in Pharmacology, 2020, 11, 583528.	3.5	28
244	Essential Role for Macrophage Migration Inhibitory Factor in Gastritis Induced by Helicobacter pylori. American Journal of Pathology, 2009, 174, 1319-1328.	3.8	27
245	Transforming growth factorâ€ <i>î²</i> 1 mediates psoriasisâ€like lesions via a Smad3â€dependent mechanism in mice. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 921-932.	1.9	27
246	Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice. Frontiers in Physiology, 2018, 9, 343.	2.8	27
247	Use of genetic mouse models in the study of diabetic nephropathy. Current Atherosclerosis Reports, 2004, 6, 197-202.	4.8	26
248	Treatment of Established Peritoneal Fibrosis by Gene Transfer of Smad7 in a Rat Model of Peritoneal Dialysis. American Journal of Nephrology, 2009, 30, 84-94.	3.1	26
249	Adenovirus-mediated down-regulation of X-linked inhibitor of apoptosis protein inhibits colon cancer. Molecular Cancer Therapeutics, 2009, 8, 2762-2770.	4.1	25
250	Petchiether A attenuates obstructive nephropathy by suppressing TGFâ€Î²/Smad3 and NFâ€ÎºB signalling. Journal of Cellular and Molecular Medicine, 2019, 23, 5576-5587.	3.6	25
251	Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Therapy, 2007, 14, 1712-1720.	4.5	24
252	Defective CFTR leads to aberrant \hat{l}^2 -catenin activation and kidney fibrosis. Scientific Reports, 2017, 7, 5233.	3.3	24

#	Article	IF	Citations
253	A simple and highly purified method for isolation of glomeruli from the mouse kidney. American Journal of Physiology - Renal Physiology, 2019, 317, F1217-F1223.	2.7	24
254	c-Jun N-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through interferon regulatory factor 1 (IRF-1) in gastrointestinal cancer. Carcinogenesis, 2008, 30, 222-229.	2.8	23
255	Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2013, 288, 31528-31539.	3.4	23
256	Smad7 protects against chronic aristolochic acid nephropathy in mice. Oncotarget, 2015, 6, 11930-11944.	1.8	23
257	Effects of SMAD7 Overexpression on Peritoneal Inflammation in a Rat Peritoneal Dialysis Model. Peritoneal Dialysis International, 2007, 27, 580-588.	2.3	22
258	Down-regulation of X-linked inhibitor of apoptosis synergistically enhanced peroxisome proliferator-activated receptor \hat{I}^3 ligand-induced growth inhibition in colon cancer. Molecular Cancer Therapeutics, 2008, 7, 2203-2211.	4.1	22
259	Additive renoprotective effects of B2-kinin receptor blocker and PPAR- \hat{I}^3 agonist in uninephrectomized db/db mice. Laboratory Investigation, 2011, 91, 1351-1362.	3.7	22
260	TGF-Î ² 1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Frontiers in Medicine, 2021, 8, 628519.	2.6	22
261	Impaired TGF-Â signalling enhances peritoneal inflammation induced by E. Coli in rats. Nephrology Dialysis Transplantation, 2010, 25, 399-412.	0.7	21
262	The Regulatory T-cell Transcription Factor Foxp3 Protects against Crescentic Glomerulonephritis. Scientific Reports, 2017, 7, 1481.	3.3	21
263	The baseline levels and risk factors for high-sensitive C-reactive protein in Chinese healthy population. Immunity and Ageing, 2018, 15, 21.	4.2	21
264	Inhibition of tumor invasion and metastasis by targeting TGF-Î ² -Smad-MMP2 pathway with Asiatic acid and Naringenin. Molecular Therapy - Oncolytics, 2021, 20, 277-289.	4.4	21
265	Immunoregulatory Activity in Adult Rat Testicular Interstitial Fluid: Relationship with Intratesticular CD8+ Lymphocytes following Treatment with Ethane Dimethane Sulfonate and Testosterone Implants1. Biology of Reproduction, 1998, 58, 935-942.	2.7	20
266	Macrophage migratory inhibitory factor (MIF) expression in acute graft-versus-host disease (GVHD) in allogeneic hemopoietic stem cell transplant recipients. Bone Marrow Transplantation, 2002, 30, 375-380.	2.4	20
267	Macrophage migration inhibitory factor expression correlates with inflammatory changes in human chronic hepatitis B infection. Liver International, 2005, 25, 571-579.	3.9	20
268	Early Differential Expression of Oncostatin M in Obstructive Nephropathy. Journal of Interferon and Cytokine Research, 2010, 30, 513-523.	1.2	20
269	Latent Transforming Growth Factor- \hat{l}^21 Protects against Bleomycin-Induced Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 761-771.	2.9	20
270	Identification of Genes Associated with Smad3-dependent Renal Injury by RNA-seq-based Transcriptome Analysis. Scientific Reports, 2015, 5, 17901.	3.3	20

#	Article	IF	Citations
271	Lethal (3) malignant brain tumor-like 2 (L3MBTL2) protein protects against kidney injury by inhibiting the DNA damage–p53–apoptosis pathway in renal tubular cells. Kidney International, 2018, 93, 855-870.	5.2	20
272	Characteristics of albumin processing during renal passage in Anti-Thy1 and anti–glomerular basement membrane glomerulonephritis. American Journal of Kidney Diseases, 2000, 35, 418-426.	1.9	19
273	Role of NAD(P)H oxidase in transforming growth factorâ€Î²1â€induced monocyte chemoattractant proteinâ€1 and interleukinâ€6 expression in rat renal tubular epithelial cells. Nephrology, 2009, 14, 302-310.	1.6	19
274	Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians. Genome Medicine, 2021, 13, 29.	8.2	18
275	Lefty antagonises TGF-β1 induced epithelial–mesenchymal transition in tubular epithelial cells. Biochemical and Biophysical Research Communications, 2010, 393, 855-859.	2.1	17
276	<scp>Smad7</scp> gene transfer attenuates angiogenesis in peritoneal dialysis rats. Nephrology, 2013, 18, 138-147.	1.6	17
277	TGF- \hat{i}^21 signaling in kidney disease: From Smads to long non-coding RNAs. Non-coding RNA Research, 2017, 2, 68-73.	4.6	17
278	Role of Câ€reactive protein in the pathogenesis of acute kidney injury. Nephrology, 2018, 23, 50-52.	1.6	17
279	C-Reactive Protein Promotes the Activation of Fibroblast-Like Synoviocytes From Patients With Rheumatoid Arthritis. Frontiers in Immunology, 2020, 11, 958.	4.8	17
280	Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules, 2022, 12, 373.	4.0	17
281	Treatment of Hypertensive Heart Disease by Targeting Smad3 Signaling in Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 791-802.	4.1	16
282	Transforming Growth Factor- \hat{l}^2 and Long Non-coding RNA in Renal Inflammation and Fibrosis. Frontiers in Physiology, 2021, 12, 684236.	2.8	16
283	AANG: A natural compound formula for overcoming multidrug resistance via synergistic rebalancing the TGFâ€Î²/Smad signalling in hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 2021, 25, 9805-9813.	3.6	16
284	Smad3 deficiency promotes beta cell proliferation and function in <i>db/db</i> mice <i>via</i> restoring Pax6 expression. Theranostics, 2021, 11, 2845-2859.	10.0	16
285	Up-regulation of ICAM-1 and VCAM-1 expression during macrophage recruitment in lipid induced glomerular injury in ExHC rats. Nephrology, 1995, 1, 221-232.	1.6	15
286	Metabolomic and lipidomic study of the protective effect of Chaihuang-Yishen formula on rats with diabetic nephropathy. Journal of Ethnopharmacology, 2015, 166, 31-41.	4.1	15
287	Dual deficiency of angiotensinâ€converting enzymeâ€2 and Mas receptor enhances angiotensin Ilâ€induced hypertension and hypertensive nephropathy. Journal of Cellular and Molecular Medicine, 2020, 24, 13093-13103.	3.6	15
288	Inflammatory stress in SARS-COV-2 associated Acute Kidney Injury. International Journal of Biological Sciences, 2021, 17, 1497-1506.	6.4	15

#	Article	IF	CITATIONS
289	USMB-shMincle: a virus-free gene therapy for blocking M1/M2 polarization of tumor-associated macrophages. Molecular Therapy - Oncolytics, 2021, 23, 26-37.	4.4	15
290	Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. International Journal of Biological Sciences, 2021, 17, 3911-3922.	6.4	15
291	Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction. Molecular Therapy, 2022, 30, 881-897.	8.2	15
292	Lysosome Depletion-Triggered Autophagy Impairment in Progressive Kidney Injury. Kidney Diseases (Basel, Switzerland), 2021, 7, 254-267.	2.5	14
293	SAP130 released by damaged tubule drives necroinflammation via miRNA-219c/Mincle signaling in acute kidney injury. Cell Death and Disease, 2021, 12, 866.	6.3	14
294	Serum levels of WNT1-inducible signaling pathway protein-1 (WISP-1): a noninvasive biomarker of renal fibrosis in subjects with chronic kidney disease. American Journal of Translational Research (discontinued), 2017, 9, 2920-2932.	0.0	14
295	Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. International Journal of Molecular Sciences, 2022, 23, 164.	4.1	14
296	Adhesion molecules in glomerulonephritis. Seminars in Immunopathology, 1994, 16, 3-22.	4.0	13
297	Local macrophage proliferation in experimental Goodpasture's syndrome. Nephrology, 1995, 1, 151-156.	1.6	13
298	Reducing uric acid as a means to prevent cardiovascular and renal disease. Expert Opinion on Therapeutic Patents, 2002, 12, 193-199.	5.0	13
299	The decreased expression of electron transfer flavoprotein \hat{l}^2 is associated with tubular cell apoptosis in diabetic nephropathy. International Journal of Molecular Medicine, 2016, 37, 1290-1298.	4.0	13
300	Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription. Cellular and Molecular Life Sciences, 2021, 78, 2387-2404.	5.4	13
301	Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. Journal of Cellular and Molecular Medicine, 2021, 25, 4860-4869.	3.6	13
302	Single-Cell RNA Sequencing Reveals the Immunological Profiles of Renal Allograft Rejection in Mice. Frontiers in Immunology, 2021, 12, 693608.	4.8	13
303	Follistatin-like 1 (FSTL1) interacts with Wnt ligands and Frizzled receptors to enhance Wnt/ \hat{l}^2 -catenin signaling in obstructed kidneys inÂvivo. Journal of Biological Chemistry, 2022, 298, 102010.	3.4	13
304	P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Molecular Therapy, 2022, 30, 3017-3033.	8.2	13
305	Therapeutic effects of cytokine blockade in glomerulonephritis. Nephrology Dialysis Transplantation, 1998, 13, 7-9.	0.7	12
306	Macrophage Migration Inhibitory Factor Expression in Male and Female Ethanol-Fed Rats. Journal of Interferon and Cytokine Research, 2001, 21, 1055-1062.	1.2	12

#	Article	IF	CITATIONS
307	Suppression of malignancy by Smad3 in mouse embryonic stem cell formed teratoma. Stem Cell Reviews and Reports, 2013, 9, 709-720.	5.6	12
308	Expression profile of macrophage migrationâ€inhibitory factor in human gingiva and reconstituted human gingival epithelia stimulated by ⟨i⟩Porphyromonas gingivalis⟨ i⟩ lipopolysaccharide. Journal of Periodontal Research, 2013, 48, 527-532.	2.7	12
309	Protective role of kallistatin in renal fibrosis via modulation of Wnt/ \hat{l}^2 -catenin signaling. Clinical Science, 2021, 135, 429-446.	4.3	12
310	Nonalbuminuric Diabetic Kidney Disease and Risk of All-Cause Mortality and Cardiovascular and Kidney Outcomes in Type 2 Diabetes: Findings From the Hong Kong Diabetes Biobank. American Journal of Kidney Diseases, 2022, 80, 196-206.e1.	1.9	12
311	XIAP-Associated Factor 1 (XAF1) Suppresses Angiogenesis in Mouse Endothelial Cells. Tumor Biology, 2008, 29, 122-129.	1.8	11
312	Gene expression profile in colon cancer cells with respect to XIAP expression status. International Journal of Colorectal Disease, 2009, 24, 245-260.	2.2	11
313	BAY61â€3606 protects kidney from acute ischemia/reperfusion injury through inhibiting spleen tyrosine kinase and suppressing inflammatory macrophage response. FASEB Journal, 2020, 34, 15029-15046.	0.5	11
314	Smad3-Targeted Therapy Protects against Cisplatin-Induced AKI by Attenuating Programmed Cell Death and Inflammation via a NOX4-Dependent Mechanism. Kidney Diseases (Basel, Switzerland), 2021, 7, 372-390.	2.5	11
315	Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting \hat{l}^2 cell proliferation <i>via</i> the E2F3-dependent mechanism. Theranostics, 2022, 12, 379-395.	10.0	11
316	Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. International Journal of Molecular Sciences, 2022, 23, 4908.	4.1	11
317	Oncogene Functions of FHL2 Are Independent from NF-κBIα in Gastrointestinal Cancer. Pathology and Oncology Research, 2009, 15, 31-36.	1.9	10
318	N-Acetyl-seryl-aspartyl-lysyl-proline Alleviates Renal Fibrosis Induced by Unilateral Ureteric Obstruction in BALB/C Mice. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	10
319	Transient receptor potential channel M2 contributes to neointimal hyperplasia in vascular walls. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1360-1371.	3.8	10
320	Discovery of a novel selective water-soluble SMAD3 inhibitor as an antitumor agent. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127396.	2.2	10
321	Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chinese Medical Journal, 2022, 135, 757-766.	2.3	10
322	Singleâ€cell RNA Sequencing Identified Novel Nr4a1 ⁺ Ear2 ⁺ Antiâ€Inflammatory Macrophage Phenotype under Myeloidâ€TLR4 Dependent Regulation in Antiâ€Glomerular Basement Membrane (GBM) Crescentic Glomerulonephritis (cGN). Advanced Science, 2022, 9, e2200668.	11.2	10
323	Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis. Scientific Reports, 2016, 6, 27745.	3.3	9
324	Regulatory role and mechanisms of myeloid TLR4 in anti-GBM glomerulonephritis. Cellular and Molecular Life Sciences, 2021, 78, 6721-6734.	5 . 4	9

#	Article	IF	CITATIONS
325	Targeting c-fms kinase attenuates chronic aristolochic acid nephropathy in mice. Oncotarget, 2016, 7, 10841-10856.	1.8	9
326	Effects of Smad7 overexpression on peritoneal inflammation in a rat peritoneal dialysis model. Peritoneal Dialysis International, 2007, 27, 580-8.	2.3	9
327	Expression of basic fibroblast growth factor and its receptor in the progression of rat crescentic glomerulonephritis. Nephrology, 1995, 1, 569-575.	1.6	8
328	Delayed-type hypersensitivity mediates Bowman's capsule rupture in Tamm?Horsfall protein-induced tubulointerstitial nephritis in the rat. Nephrology, 1996, 2, 417-427.	1.6	8
329	Up-regulation of the tumour-associated marker CD44V6 in experimental kidney disease. Clinical and Experimental Immunology, 2000, 121, 523-532.	2.6	8
330	Molecular Mechanisms of TGF-Î ² Signaling in Renal Fibrosis. Current Pathobiology Reports, 2013, 1, 291-299.	3.4	8
331	A Novel Feeder-free System for Mass Production of Murine Natural Killer Cells In Vitro . Journal of Visualized Experiments, 2018, , .	0.3	8
332	Editorial: Advances in Mechanisms of Renal Fibrosis. Frontiers in Physiology, 2018, 9, 284.	2.8	8
333	Asiatic Acid Attenuates Bone Loss by Regulating Osteoclastic Differentiation. Calcified Tissue International, 2019, 105, 531-545.	3.1	8
334	Relationship between the status of phospholipase A2 receptor and prognosis of idiopathic membranous nephropathy. Nephrology, 2020, 25, 144-149.	1.6	8
335	Deletion of Smad3 improves cardiac allograft rejection in mice. Oncotarget, 2015, 6, 17016-17030.	1.8	8
336	Dialyzer Reuse: Interaction Between Dialyzer Membrane, Disinfectant (Formalin), and Blood During Dialyzer Reprocessing. Artificial Organs, 1996, 20, 53-55.	1.9	7
337	Tubulointerstitial injury in glomerulonephritis. Nephrology, 1996, 2, s2-s6.	1.6	7
338	Nâ€acetylâ€serylâ€aspartylâ€lysylâ€proline mediates the antiâ€fibrotic properties of captopril in unilateral ureteric obstructed BALB/C mice. Nephrology, 2018, 23, 297-307.	1.6	7
339	Latent TGF- \hat{l}^21 protects against diabetic kidney disease via Arkadia/Smad7 signaling. International Journal of Biological Sciences, 2021, 17, 3583-3594.	6.4	7
340	LncRNA-Dependent Mechanisms of Transforming Growth Factor-Î ² : From Tissue Fibrosis to Cancer Progression. Non-coding RNA, 2022, 8, 36.	2.6	7
341	Local Macrophage Proliferation in Progressive Renal Injury. Contributions To Nephrology, 1996, 118, 100-108.	1.1	6
342	Cardiomyocyte-specific loss of RNA polymerase II subunit 5-mediating protein causes myocardial dysfunction and heart failure. Cardiovascular Research, 2019, 115, 1617-1628.	3.8	6

#	Article	IF	CITATIONS
343	Clinical Predictors and Long-term Impact of Acute Kidney Injury on Progression of Diabetic Kidney Disease in Chinese Patients With Type 2 Diabetes. Diabetes, 2022, 71, 520-529.	0.6	6
344	Macrophage migration inhibitory factor (MIF) - potential perspectives for immune-intervention in renal disease. Nephrology Dialysis Transplantation, 1998, 13, 2719-2720.	0.7	5
345	Distinct roles of Smads and microRNAs in TGF- \hat{l}^2 signaling during kidney diseases. Hong Kong Journal of Nephrology, 2013, 15, 14-21.	0.0	5
346	Identification of Smad3â€related transcriptomes in typeâ€2 diabetic nephropathy by whole transcriptome RNA sequencing. Journal of Cellular and Molecular Medicine, 2021, 25, 2052-2068.	3.6	5
347	The Yin and Yang Role of Transforming Growth Factor- \hat{l}^2 in Kidney Disease. , 2021, 8, 1.		5
348	EGF and EGF-receptor expression in rat anti-Thy-1 mesangial proliferative nephritis. Nephrology, 1995, 1, 83-93.	1.6	4
349	MicroRNAs in TGF-β/Smad-mediated Tissue Fibrosis. Current Pathobiology Reports, 2014, 2, 235-243.	3.4	4
350	Peritoneal inflammation and fibrosis in Câ€reactive protein transgenic mice undergoing peritoneal dialysis solution treatment. Nephrology, 2017, 22, 125-132.	1.6	4
351	Immune events in lymphoid tissues during experimental glomerulonephritis. Pathology, 1993, 25, 159-166.	0.6	4
352	Major Adverse Cardiovascular Events and Mortality Prediction by Circulating GDF-15 in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Biomolecules, 2022, 12, 934.	4.0	4
353	The Role of Interleukin-1 in Mesangial Proliferation. Contributions To Nephrology, 1995, 111, 144-148.	1.1	2
354	The application of microwave techniques in multiple immunostaining and in situ hybridization. Nephrology, 1996, 2, s116-s121.	1.6	2
355	Ultrastructural localisation of CD44 in the rat lung in experimental Goodpasture's syndrome. Pathology, 1997, 29, 380-384.	0.6	2
356	Do macrophages participate in mesangial cell proliferation?. Nephrology, 1997, 3, 501-507.	1.6	2
357	Combined interleukin 1 and tumour necrosis factor alpha blockade in rat crescentic anti-glomerular basement membrane glomerulonephritis. Nephrology, 2001, 6, 214-220.	1.6	2
358	Smad3 Promotes Cancerâ€Associated Fibroblasts Generation via Macrophage–Myofibroblast Transition (Adv. Sci. 1/2022). Advanced Science, 2022, 9, 2270005.	11.2	2
359	TGF-Î ² signaling in diabetic nephropathy: An update. Diabetic Nephropathy, 2022, .	0.1	2
360	Cell-mediated tubulointerstitial nephritis. Clinical and Experimental Nephrology, 1998, 2, 289-294.	1.6	1

#	Article	IF	CITATIONS
361	Long Noncoding RNA-7949 Regulates Macrophage Activation in Renal Inflammation via the TLR4/NF-KB Pathway. Hong Kong Journal of Nephrology, 2015, 17, S76.	0.0	1
362	Response letter: "Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b― Translational Cancer Research, 2018, 7, S629-S631.	1.0	1
363	Editorial: Immune Landscape of Kidney Pathology. Frontiers in Physiology, 2021, 12, 827537.	2.8	1
364	Molecular analysis of human glomerulonephritis. Nephrology, 1997, 3, s647-s651.	1.6	0
365	Interleukin 1 induces renal CD44 expression in vivo and in vitro: role of the transcription factor Egr-1. Nephrology, 2002, 7, 136-144.	1.6	O
366	Immunopathologic Mechanisms Relevant to Diseases. , 2007, , 35-50.		0
367	Response to C-Reactive Protein and Cardiovascular Disease: Differences Between Humans and Mice. Hypertension, 2010, 56, .	2.7	O
368	FP218L3MBTL2 PROTEIN PROTECTS AGAINST KIDNEY INJURY BY INHIBITING THE DNA DAMAGE-P53-APOPTOSIS PATHWAY IN RENAL TUBULAR CELLS. Nephrology Dialysis Transplantation, 2018, 33, i104-i104.	0.7	0
369	Letter by Zhang et al Regarding Article, "Heart Failure Stimulates Tumor Growth by Circulating Factors― Circulation, 2019, 139, 718-719.	1.6	0
370	TGF- \hat{l}^2 Signaling in Renal Fibrosis and Inflammation: Gene Therapy Using Ultrasound-Microbubble-Mediated Inducible Smad7. , 2008, , 609-619.		0
371	524-P: RNA-Sequencing of Laser-Microdissected Glomeruli and Tubules Reveal Differentially Expressed Genes in Diabetic Kidney Disease. Diabetes, 2019, 68, .	0.6	O
372	Glomerulonephritis and Smad Signaling. , 2006, , 629-635.		0
373	Abstract 1081: Smad3 silences neutrophil anticancer activity in the tumor microenvironment., 2019,,.		0
374	Emerging role of macrophages in diabetic nephropathy. Diabetic Nephropathy, 2022, .	0.1	0