Dave Sprengers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9230915/publications.pdf

Version: 2024-02-01

		201674	1	189892	
56	2,690	27		50	
papers	citations	h-index		g-index	
			ľ		
56	56	56		4353	
30	30	30		1333	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	External Validation of the RETREAT Score for Prediction of Hepatocellular Carcinoma Recurrence after Liver Transplantation. Cancers, 2022, 14, 630.	3.7	5
2	Real-life data on the impact of successful downstaging in patients with hepatocellular carcinoma: A Dutch Multicenter Study. European Journal of Internal Medicine, 2022, 97, 56-61.	2.2	1
3	Safety and Efficacy of ^{166 < /sup > Ho Radioembolization in Hepatocellular Carcinoma: The HEPAR Primary Study. Journal of Nuclear Medicine, 2022, 63, 1891-1898.}	5.0	11
4	Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. British Journal of Cancer, 2022, 127, 649-660.	6.4	23
5	Cancer-Associated Fibroblasts Provide a Stromal Niche for Liver Cancer Organoids That Confers Trophic Effects and Therapy Resistance. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 407-431.	4.5	103
6	HLA matching and rabbit antithymocyte globulin as induction therapy to avoid multiple forms of rejection after a third liver transplantation. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101539.	1.5	5
7	TIGIT and PD1 Co-blockade Restores exÂvivo Functions of Human Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 443-464.	4.5	43
8	Cancer Cell B7-H3 Expression Is More Prevalent in the Pancreato-Biliary Subtype of Ampullary Cancer Than in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 615691.	2.8	3
9	Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Translational Oncology, 2021, 14, 101073.	3.7	10
10	TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Frontiers in Immunology, 2021, 12, 699895.	4.8	102
11	Histopathological growth patterns modify the prognostic impact of microvascular invasion in non-cirrhotic hepatocellular carcinoma. Hpb, $2021, \ldots$	0.3	4
12	An Engineered IL15 Cytokine Mutein Fused to an Anti-PD1 Improves Intratumoral T-cell Function and Antitumor Immunity. Cancer Immunology Research, 2021, 9, 1141-1157.	3.4	33
13	Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. British Journal of Cancer, 2021 , , .	6.4	12
14	Mitochondrial Fusion Via OPA1 and MFN1 Supports Liver Tumor Cell Metabolism and Growth. Cells, 2020, 9, 121.	4.1	60
15	Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis. British Journal of Cancer, 2020, 123, 196-206.	6.4	35
16	HHLA2 is expressed in pancreatic and ampullary cancers and increased expression is associated with better post-surgical prognosis. British Journal of Cancer, 2020, 122, 1211-1218.	6.4	26
17	LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nature Communications, 2020, 11 , 1961 .	12.8	49
18	GITR ligation enhances functionality of tumorâ€infiltrating T cells in hepatocellular carcinoma. International Journal of Cancer, 2019, 145, 1111-1124.	5.1	42

#	Article	IF	Citations
19	Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. Journal of Hepatology, 2019, 71, 753-762.	3.7	81
20	Suppression of Hepatocellular Carcinoma by Mycophenolic Acid in Experimental Models and in Patients. Transplantation, 2019, 103, 929-937.	1.0	16
21	Action and clinical significance of CCAAT/enhancer-binding protein delta in hepatocellular carcinoma. Carcinogenesis, 2019, 40, 155-163.	2.8	9
22	Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis, 2019, 40, 145-154.	2.8	30
23	Immunosuppressive drug withdrawal late after liver transplantation improves the lipid profile and reduces infections. European Journal of Gastroenterology and Hepatology, 2019, 31, 1444-1451.	1.6	5
24	Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Oncolmmunology, 2018, 7, e1448332.	4.6	54
25	Protocol for the STRONG trial: stereotactic body radiation therapy following chemotherapy for unresectable perihilar cholangiocarcinoma, a phase I feasibility study. BMJ Open, 2018, 8, e020731.	1.9	10
26	PD-L1, Galectin-9 and CD8 ⁺ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncolmmunology, 2017, 6, e1273309.	4.6	117
27	Antibodies Against Immune Checkpoint Molecules RestoreÂFunctions of Tumor-Infiltrating T Cells in HepatocellularÂCarcinomas. Gastroenterology, 2017, 153, 1107-1119.e10.	1.3	309
28	Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury. Gastroenterology, 2017, 153, 1133-1147.	1.3	39
29	Multiple biopsy passes and the risk of complications of percutaneous liver biopsy. European Journal of Gastroenterology and Hepatology, 2017, 29, 36-41.	1.6	65
30	Factors associated with ethnical disparity in overall survival for patients with hepatocellular carcinoma. Oncotarget, 2017, 8, 15193-15204.	1.8	25
31	Hepatocellular carcinoma in cirrhotic versus noncirrhotic livers. European Journal of Gastroenterology and Hepatology, 2016, 28, 352-359.	1.6	56
32	Short article. European Journal of Gastroenterology and Hepatology, 2016, 28, 963-966.	1.6	6
33	Hepatocellular carcinoma in noncirrhotic livers is associated with steatosis rather than steatohepatitis: potential implications for pathogenesis. European Journal of Gastroenterology and Hepatology, 2016, 28, 955-962.	1.6	14
34	Evidence of good prognosis of hepatocellular adenoma in post-menopausal women. Journal of Hepatology, 2016, 65, 1163-1170.	3.7	23
35	Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antiviral Research, 2016, 133, 41-49.	4.1	50
36	Blocking Wnt Secretion Reduces Growth of Hepatocellular Carcinoma Cell Lines Mostly Independent of \hat{l}^2 -Catenin Signaling. Neoplasia, 2016, 18, 711-723.	5. 3	37

#	Article	IF	CITATIONS
37	IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFNâ€stimulated genes. FASEB Journal, 2016, 30, 3352-3367.	0.5	54
38	Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 2834-2848.	3.2	64
39	Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid. Molecular Medicine, 2015, 21, 792-802.	4.4	14
40	Surveillance for hepatocellular carcinoma is associated with increased survival: Results from a large cohort in the Netherlands. Journal of Hepatology, 2015, 63, 1156-1163.	3.7	117
41	Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncolmmunology, 2015, 4, e1008355.	4.6	78
42	To target or not to target viral antigens in HBV related HCC?. Journal of Hepatology, 2015, 62, 1449-1450.	3.7	6
43	Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Research, 2015, 123, 120-131.	4.1	156
44	Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication. Antiviral Research, 2015, 124, 11-19.	4.1	22
45	GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells <i>ex vivo</i> . Oncolmmunology, 2015, 4, e1051297.	4.6	45
46	Multipotent mesenchymal stromal cells in liver cancer: Implications for tumor biology and therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 439-445.	7.4	10
47	Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology, 2013, 57, 183-194.	7.3	147
48	T-cell suppression mediated by regulatory T cells infiltrating hepatic tumors can be overcome by GITRL treatment. Oncolmmunology, 2013, 2, e22450.	4.6	10
49	Distinct Requirements for CD1d Intracellular Transport for Development of VÎ ± 14 iNKT Cells. Journal of Immunology, 2009, 183, 1780-1788.	0.8	9
50	\hat{l}_{\pm} -Galactosylceramide in Chronic Hepatitis B Infection: Results from a Randomized Placebo-Controlled Phase I/ II Trial. Antiviral Therapy, 2009, 14, 809-818.	1.0	81
51	Flowcytometric quantitation of hepatitis B viral antigens in hepatocytes from regular and fine-needle biopsies. Journal of Virological Methods, 2007, 142, 189-197.	2.1	11
52	Induction of Regulatory T-Cells and Interleukin- 10 -Producing Cells in Non-Responders to Pegylated Interferon- $\hat{l}\pm$ Therapy for Chronic Hepatitis B. Antiviral Therapy, 2007, 12, 1087-1096.	1.0	25
53	Analysis of intrahepatic HBV-specific cytotoxic T-cells during and after acute HBV infection in humans. Journal of Hepatology, 2006, 45, 182-189.	3.7	42
54	Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology, 2006, 44, 907-914.	7.3	60

#	Article	IF	CITATIONS
55	Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology, 2004, 40, 738-746.	7.3	224
56	Coarse vs. fine needle aspiration biopsy. Journal of Hepatology, 2004, 41, 503-504.	3.7	2