Frédéric Gaymard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9229866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015, 20, 33-40.	8.8	435
2	The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5549-5554.	7.1	388
3	Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant Journal, 1996, 9, 195-203.	5.7	337
4	Involvement of the <scp>ABCG</scp> 37 transporter in secretion of scopoletin and derivatives by <i>Arabidopsis</i> roots in response to iron deficiency. New Phytologist, 2014, 201, 155-167.	7.3	322
5	Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology, 2003, 51, 773-787.	3.9	221
6	Guard Cell Inward K+ Channel Activity inArabidopsis Involves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276, 3215-3221.	3.4	217
7	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	6.6	196
8	The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors?. Frontiers in Plant Science, 2019, 10, 6.	3.6	146
9	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	6.6	120
10	The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis. Plant Cell, 2020, 32, 508-524.	6.6	111
11	Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 2015, 8, 439-453.	8.3	106
12	Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, 2016, 7, 1711.	3.6	105
13	Facilitated Fe Nutrition by Phenolic Compounds Excreted by the Arabidopsis ABCG37/PDR9 Transporter Requires the IRT1/FRO2 High-Affinity Root Fe 2+ Transport System. Molecular Plant, 2016, 9, 485-488.	8.3	105
14	Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 2019, 223, 1433-1446.	7.3	92
15	Monothiol Glutaredoxin–BolA Interactions: Redox Control of Arabidopsis thaliana BolA2 and SufE1. Molecular Plant, 2014, 7, 187-205.	8.3	70
16	Coumarin accumulation and trafficking in <i>Arabidopsis thaliana</i> : a complex and dynamic process. New Phytologist, 2021, 229, 2062-2079.	7.3	54
17	Biochemical characterization of the Arabidopsis K+ channels KAT1 and AKT1 expressed or co-expressed in insect cells. Plant Journal, 2000, 23, 527-538.	5.7	39
18	Iron–sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. Journal of Experimental Botany, 2019, 70, 1875-1889.	4.8	25

2

Frédéric Gaymard

#	Article	IF	CITATIONS
19	Identification of client iron–sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 4171-4187.	4.8	25
20	Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit <i>AtKC1</i> . Plant Cell, 2022, 34, 2019-2037.	6.6	18
21	Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS ONE, 2020, 15, e0237998.	2.5	16
22	Transcriptional Regulation of Iron Distribution in Seeds: A Perspective. Frontiers in Plant Science, 2020, 11, 725.	3.6	6
23	2000Âyears of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize. Scientific Reports, 2021, 11, 17322.	3.3	6
24	A Global Proteomic Approach Sheds New Light on Potential Iron-Sulfur Client Proteins of the Chloroplastic Maturation Factor NFU3. International Journal of Molecular Sciences, 2020, 21, 8121.	4.1	5
25	B3 Transcription Factors Determine Iron Distribution and FERRITIN Gene Expression in Embryo but Do	3.6	5