
Swidbert R Ott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9229855/publications.pdf Version: 2024-02-01

SWIDBEDT P OTT

#	Article	IF	CITATIONS
1	Malpighamoeba infection compromises fluid secretion and P-glycoprotein detoxification in Malpighian tubules. Scientific Reports, 2020, 10, 15953.	3.3	4
2	First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Research, 2020, 9, 775.	1.6	24
3	First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Research, 2020, 9, 775.	1.6	34
4	Regressions Fit for Purpose: Models of Locust Phase State Must Not Conflate Morphology With Behavior. Frontiers in Behavioral Neuroscience, 2018, 12, 137.	2.0	2
5	From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. Advances in Insect Physiology, 2017, 53, 167-285.	2.7	101
6	Environmental Adaptation, Phenotypic Plasticity, and Associative Learning in Insects: The Desert Locust as a Case Study. Integrative and Comparative Biology, 2016, 56, 914-924.	2.0	21
7	Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity. Journal of Comparative Neurology, 2016, 524, Spc1-Spc1.	1.6	0
8	Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts. Scientific Reports, 2016, 6, 35608.	3.3	13
9	Brain composition in <i>Heliconius</i> butterflies, posteclosion growth and experienceâ€dependent neuropil plasticity. Journal of Comparative Neurology, 2016, 524, 1747-1769.	1.6	90
10	Brain composition in <i>Godyris zavaleta</i> , a diurnal butterfly, Reflects an increased reliance on olfactory information. Journal of Comparative Neurology, 2015, 523, 869-891.	1.6	69
11	Differential activation of serotonergic neurons during short- and long-term gregarization of desert locusts. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142062.	2.6	14
12	Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene. Insect Biochemistry and Molecular Biology, 2015, 63, 7-13.	2.7	24
13	Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. Journal of Insect Physiology, 2014, 65, 9-26.	2.0	61
14	Phenotypic Transformation Affects Associative Learning in the Desert Locust. Current Biology, 2013, 23, 2407-2412.	3.9	18
15	Visually targeted reaching in horse-head grasshoppers. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3697-3705.	2.6	14
16	A long-latency aversive learning mechanism enables locusts to avoid odours associated with the consequences of ingesting toxic food. Journal of Experimental Biology, 2012, 215, 1711-1719.	1.7	27
17	Critical role for protein kinase A in the acquisition of gregarious behavior in the desert locust. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E381-7.	7.1	69
18	Epigenetic remodelling of brain, body and behaviour during phase change in locusts. Neural Systems & Circuits, 2011, 1, 11.	1.8	30

SWIDBERT R OTT

39

#	Article	IF	CITATIONS
19	Associative olfactory learning in the desert locust, <i>Schistocerca gregaria</i> . Journal of Experimental Biology, 2011, 214, 2495-2503.	1.7	47
20	Microarray-Based Transcriptomic Analysis of Differences between Long-Term Gregarious and Solitarious Desert Locusts. PLoS ONE, 2011, 6, e28110.	2.5	36
21	Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts. Journal of Insect Physiology, 2010, 56, 902-910.	2.0	12
22	Threeâ€dimensional distribution of NO sources in a primary mechanosensory integration center in the locust and its implications for volume signaling. Journal of Comparative Neurology, 2010, 518, 2903-2916.	1.6	7
23	Three-dimensional distribution of no sources in a primary mechanosensory integration center in the locust and its implications for volume signaling. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	1.6	2
24	Laboratory Populations as a Resource for Understanding the Relationship Between Genotypes and Phenotypes. Advances in Insect Physiology, 2010, , 1-37.	2.7	23
25	Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3087-3096.	2.6	109
26	Serotonin Mediates Behavioral Gregarization Underlying Swarm Formation in Desert Locusts. Science, 2009, 323, 627-630.	12.6	338
27	Confocal microscopy in large insect brains: Zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. Journal of Neuroscience Methods, 2008, 172, 220-230.	2.5	121
28	Nitric oxide synthase in crayfish walking leg ganglia: Segmental differences in chemo-tactile centers argue against a generic role in sensory integration. Journal of Comparative Neurology, 2007, 501, 381-399.	1.6	15
29	Enhanced fidelity of diffusive nitric oxide signalling by the spatial segregation of source and target neurones in the memory centre of an insect brain. European Journal of Neuroscience, 2007, 25, 181-190.	2.6	26
30	Localization of nitric oxide synthase in the central complex and surrounding midbrain neuropils of the locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2005, 484, 206-223.	1.6	32
31	Modeling Cooperative Volume Signaling in a Plexus of Nitric Oxide Synthase-Expressing Neurons. Journal of Neuroscience, 2005, 25, 6520-6532.	3.6	54
32	Timed and Targeted Differential Regulation of Nitric Oxide Synthase (NOS) and Anti-NOS Genes by Reward Conditioning Leading to Long-Term Memory Formation. Journal of Neuroscience, 2005, 25, 1188-1192.	3.6	76
33	An evolutionarily conserved mechanism for sensitization of soluble guanylyl cyclase reveals extensive nitric oxide-mediated upregulation of cyclic GMP in insect brain. European Journal of Neuroscience, 2004, 20, 1231-1244.	2.6	20
34	Serial hearing organs in the atympanate grasshopperBullacris membracioides(Orthoptera,) Tj ETQq0 0 0 rgBT /O $^{\circ}$	verlock 10	Tf 50 142 Td
35	New Techniques for Whole-mount NADPH-diaphorase Histochemistry Demonstrated in Insect Ganglia. Journal of Histochemistry and Cytochemistry, 2003, 51, 523-532.	2.5	32

Nitric oxide synthase histochemistry in insect nervous systems: Methanol/formalin fixation reveals36the neuroarchitecture of formaldehyde-sensitive NADPH diaphorase in the cockroachPeriplaneta1.6americana. Journal of Comparative Neurology, 2002, 448, 165-185.1.6

SWIDBERT R OTT

#	Article	IF	CITATIONS
37	Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket,Mecopoda elongata. European Journal of Neuroscience, 2002, 15, 1655-1662.	2.6	57
38	The Neuroanatomy of Nitric Oxide–Cyclic GMP Signaling in the Locust: Functional Implications for Sensory Systems1. American Zoologist, 2001, 41, 321-331.	0.7	4
39	The Neuroanatomy of Nitric Oxide–Cyclic GMP Signaling in the Locust: Functional Implications for Sensory Systems. American Zoologist, 2001, 41, 321-331.	0.7	11
40	Sensory afferents and motor neurons as targets for nitric oxide in the locust. Journal of Comparative Neurology, 2000, 422, 521-532.	1.6	38
41	Sensory afferents and motor neurons as targets for nitric oxide in the locust. Journal of Comparative Neurology, 2000, 422, 521-532.	1.6	2
42	NADPH diaphorase histochemistry in the thoracic ganglia of locusts, crickets, and cockroaches: Species differences and the impact of fixation. , 1999, 410, 387-397.		37
43	Nitric oxide synthase in the thoracic ganglia of the locust: Distribution in the neuropiles and morphology of neurones. , 1998, 395, 217-230.		39
44	Acquisition of high-resolution digital images in video microscopy: Automated image mosaicking on a desktop microcomputer. Microscopy Research and Technique, 1997, 38, 335-339.	2.2	14